23 resultados para Expectation-maximization (em) Algorithm
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.
Resumo:
Iterative Closest Point (ICP) is a widely exploited method for point registration that is based on binary point-to-point assignments, whereas the Expectation Conditional Maximization (ECM) algorithm tries to solve the problem of point registration within the framework of maximum likelihood with point-to-cluster matching. In this paper, by fulfilling the implementation of both algorithms as well as conducting experiments in a scenario where dozens of model points must be registered with thousands of observation points on a pelvis model, we investigated and compared the performance (e.g. accuracy and robustness) of both ICP and ECM for point registration in cases without noise and with Gaussian white noise. The experiment results reveal that the ECM method is much less sensitive to initialization and is able to achieve more consistent estimations of the transformation parameters than the ICP algorithm, since the latter easily sinks into local minima and leads to quite different registration results with respect to different initializations. Both algorithms can reach the high registration accuracy at the same level, however, the ICP method usually requires an appropriate initialization to converge globally. In the presence of Gaussian white noise, it is observed in experiments that ECM is less efficient but more robust than ICP.
Resumo:
This paper presents a comparison of principal component (PC) regression and regularized expectation maximization (RegEM) to reconstruct European summer and winter surface air temperature over the past millennium. Reconstruction is performed within a surrogate climate using the National Center for Atmospheric Research (NCAR) Climate System Model (CSM) 1.4 and the climate model ECHO-G 4, assuming different white and red noise scenarios to define the distortion of pseudoproxy series. We show how sensitivity tests lead to valuable “a priori” information that provides a basis for improving real world proxy reconstructions. Our results emphasize the need to carefully test and evaluate reconstruction techniques with respect to the temporal resolution and the spatial scale they are applied to. Furthermore, we demonstrate that uncertainties inherent to the predictand and predictor data have to be more rigorously taken into account. The comparison of the two statistical techniques, in the specific experimental setting presented here, indicates that more skilful results are achieved with RegEM as low frequency variability is better preserved. We further detect seasonal differences in reconstruction skill for the continental scale, as e.g. the target temperature average is more adequately reconstructed for summer than for winter. For the specific predictor network given in this paper, both techniques underestimate the target temperature variations to an increasing extent as more noise is added to the signal, albeit RegEM less than with PC regression. We conclude that climate field reconstruction techniques can be improved and need to be further optimized in future applications.
Resumo:
This paper addresses the issue of matching statistical and non-rigid shapes, and introduces an Expectation Conditional Maximization-based deformable shape registration (ECM-DSR) algorithm. Similar to previous works, we cast the statistical and non-rigid shape registration problem into a missing data framework and handle the unknown correspondences with Gaussian Mixture Models (GMM). The registration problem is then solved by fitting the GMM centroids to the data. But unlike previous works where equal isotropic covariances are used, our new algorithm uses heteroscedastic covariances whose values are iteratively estimated from the data. A previously introduced virtual observation concept is adopted here to simplify the estimation of the registration parameters. Based on this concept, we derive closed-form solutions to estimate parameters for statistical or non-rigid shape registrations in each iteration. Our experiments conducted on synthesized and real data demonstrate that the ECM-DSR algorithm has various advantages over existing algorithms.
Resumo:
Saccadic performance depends on the requirements of the current trial, but also may be influenced by other trials in the same experiment. This effect of trial context has been investigated most for saccadic error rate and reaction time but seldom for the positional accuracy of saccadic landing points. We investigated whether the direction of saccades towards one goal is affected by the location of a second goal used in other trials in the same experimental block. In our first experiment, landing points ('endpoints') of antisaccades but not prosaccades were shifted towards the location of the alternate goal. This spatial bias decreased with increasing angular separation between the current and alternative goals. In a second experiment, we explored whether expectancy about the goal location was responsible for the biasing of the saccadic endpoint. For this, we used a condition where the saccadic goal randomly changed from one trial to the next between locations on, above or below the horizontal meridian. We modulated the prior probability of the alternate-goal location by showing cues prior to stimulus onset. The results showed that expectation about the possible positions of the saccadic goal is sufficient to bias saccadic endpoints and can account for at least part of this phenomenon of 'alternate-goal bias'.
Resumo:
A novel computerized algorithm for hip joint motion simulation and collision detection, called the Equidistant Method, has been developed. This was compared to three pre-existing methods having different properties regarding definition of the hip joint center and behavior after collision detection. It was proposed that the Equidistant Method would be most accurate in detecting the location and extent of femoroacetabular impingement.
Resumo:
Residual acetabular dysplasia of the hip in most patients can be corrected by periacetabular osteotomy. However, some patients have intraarticular abnormalities causing insufficient coverage, containment or congruency after periacetabular osteotomy, or extraarticular abnormalities that limit either acetabular correction or hip motion. For these patients, we believe an additional proximal femoral osteotomy can improve coverage, containment, congruency and/or motion.
Resumo:
ABSTRACT:
Resumo:
The objective of this study was to assess a pharmacokinetic algorithm to predict ketamine plasma concentration and drive a target-controlled infusion (TCI) in ponies. Firstly, the algorithm was used to simulate the course of ketamine enantiomers plasma concentrations after the administration of an intravenous bolus in six ponies based on individual pharmacokinetic parameters obtained from a previous experiment. Using the same pharmacokinetic parameters, a TCI of S-ketamine was then performed over 120 min to maintain a concentration of 1 microg/mL in plasma. The actual plasma concentrations of S-ketamine were measured from arterial samples using capillary electrophoresis. The performance of the simulation for the administration of a single bolus was very good. During the TCI, the S-ketamine plasma concentrations were maintained within the limit of acceptance (wobble and divergence <20%) at a median of 79% (IQR, 71-90) of the peak concentration reached after the initial bolus. However, in three ponies the steady concentrations were significantly higher than targeted. It is hypothesized that an inaccurate estimation of the volume of the central compartment is partly responsible for that difference. The algorithm allowed good predictions for the single bolus administration and an appropriate maintenance of constant plasma concentrations.
Resumo:
To assess the diagnostic accuracy, image quality, and radiation dose of an iterative reconstruction algorithm compared with a filtered back projection (FBP) algorithm for abdominal computed tomography (CT) at different tube voltages.
Resumo:
To investigate whether an adaptive statistical iterative reconstruction (ASIR) algorithm improves the image quality at low-tube-voltage (80-kVp), high-tube-current (675-mA) multidetector abdominal computed tomography (CT) during the late hepatic arterial phase.
Resumo:
Successful treatment of prosthetic hip joint infection (PI) means elimination of infection and restored hip function. However, functional outcome is rarely studied. We analyzed the outcome of the strict use of a treatment algorithm for PI.