4 resultados para Expansión agraria
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Expansins are members of a multigene family of extracellular proteins, which increase cell wall extensibility in vitro and thus are thought to be involved in cell expansion. The major significance of the presence of this large gene family may be that distinctly expressed genes can independently regulate cell expansion in place and time. Here we report on LeExp9, a new expansin gene from tomato, and compare its expression in the shoot tip with that of LeExp2 and LeExp18. LeExp18 gene is expressed in very young tissues of the tomato shoot apex and the transcript levels are upregulated in the incipient primordium. LeExp2 mRNA accumulated in more mature tissues and transcript levels correlated with cell elongation in the elongation zone. In situ hybridization experiments showed a uniform distribution of LeExp9 mRNA in submeristematic tissues. When gibberellin-deficient mutant tomatoes that lacked elongation of the internodes were treated with gibberellin, the phenotypic rescue was correlated with an increase in LeExp9 and LeExp2, but not LeExp18 levels. We propose that the three expansins define three distinct growing zones in the shoot tip. In the meristem proper, gibberellin-independent LeExp18 mediates the cell expansion that accompanies cell division. In the submeristematic zone, LeExp9 mediates cell expansion at a time that cell division comes to a halt. LeExp9 expression requires gibberellin but the hormone is not normally limiting. Finally, LeExp2 mediates cell elongation in young stem tissue. LeExp2 expression is limited by the available gibberellin. These data suggest that regulation of cell wall extensibility is controlled, at least in part, by differential regulation of expansin genes.
Resumo:
The aim of this work was to study the role of the cell wall protein expansin in elongation growth. Expansins increase cell wall extensibility in vitro and are thought to be involved in cell elongation. Here, we studied the regulation of two tomato (Lycopersicon esculentum cv Moneymaker) expansin genes,LeExp2 and LeExp18, in rapidly expanding tissues. LeExp2 was strongly expressed in the elongation zone of hypocotyls and in the faster growing stem part during gravitropic stimulation. LeExp18 expression did not correlate with elongation growth. Exogenous application of hormones showed a substantial auxin-stimulation of LeExp2 mRNA in etiolated hypocotyls and a weaker auxin-stimulation ofLeExp18 mRNA in stem tissue. Analysis of transcript accumulation revealed higher levels of LeExp2 andLeExp18 in light-treated, slow-growing tissue than in dark-treated, rapidly elongating tissue. Expansin protein levels and cell wall extension activities were similar in light- and dark-grown hypocotyl extracts. The results show a strong correlation between expansin gene expression and growth rate, but this correlation is not absolute. We conclude that elongation growth is likely to be controlled by expansin acting in concert with other factors that may limit growth under some physiological conditions.
Resumo:
Expansins are extracellular proteins that increase plant cell wall extensibility in vitro and are thought to be involved in cell expansion. We showed in a previous study that administration of an exogenous expansin protein can trigger the initiation of leaflike structures on the shoot apical meristem of tomato. Here, we studied the expression patterns of two tomato expansin genes, LeExp2 and LeExp18. LeExp2 is preferentially expressed in expanding tissues, whereas LeExp18 is expressed preferentially in tissues with meristematic activity. In situ hybridization experiments showed that LeExp18 expression is elevated in a group of cells, called I1, which is the site of incipient leaf primordium initiation. Thus, LeExp18 expression is a molecular marker for leaf initiation, predicting the site of primordium formation at a time before histological changes can be detected. We propose a model for the regulation of phyllotaxis that postulates a crucial role for expansin in leaf primordium initiation.
Resumo:
Our previous work has shown that localised activity of the cell-wall-loosening protein expansin is sufficient to induce primordia on the apical meristem of tomato, consistent with the hypothesis that tissue expansion plays a key role in leaf initiation. In this paper we describe the earliest morphogenic events visible on the surface of the apical meristem of tomato (Lycopersicon esculentum Mill.) following treatment with expansin and report on the spectrum of final structures formed. Our observations are consistent with a proposed primary function of expansin effecting morphogenesis via altered biophysical stress patterns in the meristem. The primordia induced by expansin do not complete the full program of leaf development. We present data indicating that one reason for this might be the inability of exogenous expansin to mimic the endogenous pattern of expansin activity in the meristem. These data provide the first detailed analysis at the cellular level of expansin action on living tissue, the first description of the spectrum of structures induced by expansin on the apical meristem, and give an insight into a potentially fundamental mechanism in plant development.