6 resultados para Exotoxin-a

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Designed ankyrin repeat proteins (DARPins) hold great promise as a new class of binding molecules to overcome the limitations of antibodies for biomedical applications. Here, we assessed the potential of an epithelial cell adhesion molecule (EpCAM)-specific DARPin (Ec4) for tumor targeting as a fusion toxin with Pseudomonas aeruginosa exotoxin A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyvalent Ig preparations, derived from the pooled plasma of thousands of healthy donors, contain a complex mix of both 'acquired' and natural antibodies directed against pathogens as well as foreign and self/auto antigens (Ag). Depending on their formulation, donor pool size, etc., liquid Ig preparations contain monomeric and dimeric IgG. The dimeric IgG fraction is thought to represent mainly idiotype-antiidiotype Ab pairs. Treatment of all IgG fractions at pH 4 effectively monomerizes the IgG dimers resulting in separated idiotype-antiidiotype Ab pairs and thus in a comparable F(ab')(2) binding site availability of the different IgG fractions. Previously, we identified an increased anti-self-reactivity within the monomerized dimer fraction. This study addressed if, among the different IgG fractions, an analogous preferential reactivity was evident in the response against different pathogen-derived protein and carbohydrate antigens. Therefore, we assessed the activity of total unseparated IgG, the monomeric and dimeric IgG fractions against antigenic structures of bacterial and viral antigens/virulence factors. All fractions showed similar reactivity to protein antigens except for exotoxin A of Pseudomonas aeruginosa, where the dimeric fraction, especially when monomerized, showed a marked increase in reactivity. This suggests that the production of antiidiotypic IgG antibodies contributes to controlling the immune response to certain categories of pathogens. In contrast, the monomeric IgG fractions showed increased reactivity towards pathogen-associated polysaccharides, classically regarded as T-independent antigens. Taken together, the differential reactivity of the IgG fractions seems to indicate a preferential segregation of antibody reactivities according to the nature of the antigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed an outbreak of invasive infections with an exotoxin U positive Pseudomonas aeruginosa strain within a pediatric oncology care unit. Environmental sampling and molecular characterization of the Pseudomonas aeruginosa strains led to identification of the outbreak source. An errant water jet into the sink within patient rooms was observed. Optimized outbreak management resulted in an abundance of further Pseudomonas aeruginosa infections within the pediatric oncology care unit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arctic char Salvelinus alpinus farmed in different places in Austria and free of the viral diseases viral haemorrhagic septcaemia (VHS), infectious haematopoietic necrosis (IHN) and infectious pancreatic necrosis (IPN) experienced disease and mortality. Diseased fish showed skin ulceration and pathological signs of sepsis. Aeromonas sp. was isolated as pure culture from the kidney of freshly euthanized diseased fish. Three independent isolates from outbreaks that occurred on 2 of the affected farms were analyzed phylogenetically by DNA sequence analysis of the rrs and gyrB genes and phenotypically with biochemical reactions. All 3 isolates were identified as Aeromonas salmonicida subsp. smithia. Analysis of virulence genes in these isolates revealed the presence of a Type III secretion system as well as several related virulence effector genes including aexT, encoding the Aeromonas exotoxin AexT, aopP and aopH. These genes are characteristic for virulent strains of typical and atypical subspecies of A. salmonicida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusion toxins used for cancer-related therapy have demonstrated short circulation half-lives, which impairs tumor localization and, hence, efficacy. Here, we demonstrate that the pharmacokinetics of a fusion toxin composed of a designed ankyrin repeat protein (DARPin) and domain I–truncated Pseudomonas Exotoxin A (PE40/ETA″) can be significantly improved by facile bioorthogonal conjugation with a polyethylene glycol (PEG) polymer at a unique position. Fusion of the anti-EpCAM DARPin Ec1 to ETA″ and expression in methionine-auxotrophic E. coli enabled introduction of the nonnatural amino acid azidohomoalanine (Aha) at position 1 for strain-promoted click PEGylation. PEGylated Ec1-ETA″ was characterized by detailed biochemical analysis, and its potential for tumor targeting was assessed using carcinoma cell lines of various histotypes in vitro, and subcutaneous and orthotopic tumor xenografts in vivo. The mild click reaction resulted in a well-defined mono-PEGylated product, which could be readily purified to homogeneity. Despite an increased hydrodynamic radius resulting from the polymer, the fusion toxin demonstrated high EpCAM-binding activity and retained cytotoxicity in the femtomolar range. Pharmacologic analysis in mice unveiled an almost 6-fold increase in the elimination half-life (14 vs. 82 minutes) and a more than 7-fold increase in the area under the curve (AUC) compared with non-PEGylated Ec1-ETA″, which directly translated in increased and longer-lasting effects on established tumor xenografts. Our data underline the great potential of combining the inherent advantages of the DARPin format with bioorthogonal click chemistry to overcome the limitations of engineering fusion toxins with enhanced efficacy for cancer-related therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in toxicity in normal tissues. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA″), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the rhinovirus 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA″, simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA″ was much better tolerated than Ec1-ETA″; it showed a longer circulation half-life and an almost 10-fold increased area under the curve (AUC). Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.