57 resultados para Exame vestibular
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
For the prevention of postoperative CSF fistula a better understanding of origins and risk factors is necessary.
Resumo:
Unilateral damage to the labyrinth and the vestibular nerve cause rotational vertigo, postural imbalance, oculomotor disorders and spatial disorientation. Electrophysiological investigations in animals revealed that such deficits are partly due to imbalanced spontaneous activity and sensitivity to motion in neurons located in the ipsilesional and contralesional vestibular nuclei. Neurophysiological reorganizations taking place in the vestibular nuclei are the basis of the decline of the symptoms over time, a phenomenon known as vestibular compensation. Vestibular compensation is facilitated by motor activity and sensory experience, and current rehabilitation programs favor physical activity during the acute stage of a unilateral vestibular loss. Unfortunately, vestibular-defective patients tend to develop strategies in order to avoid movements causing imbalance and nausea (in particular body movements towards the lesioned side), which impedes vestibular compensation. Neuroanatomical evidence suggests a cortical control of postural and oculomotor reflexes based on corticofugal projections to the vestibular nuclei and, therefore, the possibility to manipulate vestibular functions through top-down mechanisms. Based on evidence from neuroimaging studies showing that imagined whole-body movements can activate part of the vestibular cortex, we propose that mental imagery of whole-body rotations to the lesioned and to the healthy side will help rebalancing the activity in the ipsilesional and contralesional vestibular nuclei. Whether imagined whole-body rotations can improve vestibular compensation could be tested in a randomized controlled study in such patients beneficiating, or not, from a mental imagery training. If validated, this hypothesis will help developing a method contributing to reduce postural instability and falls in vestibular-defective patients. Imagined whole-body rotations thus could provide a simple, safe, home-based and self-administered therapeutic method with the potential to overcome the inconvenience related to physical movements.
Resumo:
For postoperative CSF-fistula prevention a better understanding of its origins and risk factors is necessary. To identify the role of the tumor growth for the risk to develop CSF-fistula we performed a retrospective analysis.
Resumo:
Zebrafish belladonna (bel) mutants carry a mutation in the lhx2 gene that encodes a Lim domain homeobox transcription factor, leading to a defect in the retinotectal axon pathfinding. As a result, a large fraction of homozygous bel mutants is achiasmatic. Achiasmatic bel mutants display ocular motor instabilities, both reserved optokinetic response (OKR) and spontaneous eye oscillations, and an unstable swimming behavior, described as looping. All these unstable behaviors have been linked to the underlying optic nerve projection defect. Looping has been investigated under different visual stimuli and shown to be vision dependent and contrast sensitive. In addition, looping correlates perfectly with reversed OKR and the spontaneous oscillations of the eyes. Hence, it has been hypothesized that looping is a compensatory response to the perception of self-motion induced by the spontaneous eye oscillations. However, both ocular and postural instabilities could also be caused by a yet unidentified vestibular deficit. Here, we performed a preliminary test of the vestibular function in achiasmatic bel larval mutants in order to clarify the potential role of a vestibular deficit in looping. We found that the vestibular ocular reflex (VOR) is normally directed in both bel mutants and wild types and therefore exclude the possibility that nystagmus and looping in reverse to the rotating optokinetic drum can be attributed to an underlying vestibular deficit.