3 resultados para Evolutionary Polynomial Regression (EPR) for HydroSystems

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To estimate changes in coronary risk factors and their implications for coronary heart disease (CHD) rates in men starting highly active antiretroviral therapy (HAART). METHODS: Men participating in the Swiss HIV Cohort Study with measurements of coronary risk factors both before and up to 3 years after starting HAART were identified. Fractional polynomial regression was used to graph associations between risk factors and time on HAART. Mean risk factor changes associated with starting HAART were estimated using multilevel models. A prognostic model was used to predict corresponding CHD rate ratios. RESULTS: Of 556 eligible men, 259 (47%) started a nonnucleoside reverse transcriptase inhibitor (NNRTI) and 297 a protease inhibitor (PI) based regimen. Levels of most risk factors increased sharply during the first 3 months on HAART, then more slowly. Increases were greater with PI- than NNRTI-based HAART for total cholesterol (1.18 vs. 0.98 mmol L(-1)), systolic blood pressure (3.6 vs. 0 mmHg) and BMI (1.04 vs. 0.55 kg m(2)) but not HDL cholesterol (0.24 vs. 0.32 mmol L(-1)) or glucose (1.02 vs. 1.03 mmol L(-1)). Predicted CHD rate ratios were 1.40 (95% CI 1.13-1.75) and 1.17 (0.95-1.47) for PI- and NNRTI-based HAART respectively. CONCLUSIONS: Coronary heart disease rates will increase in a majority of patients starting HAART: however the increases corresponding to typical changes in risk factors are relatively modest and could be offset by lifestyle changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: ;Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast;genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.;Results: ;According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall;evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level.;Conclusions: ;The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the;mechanism determining the molecular evolutionary rate at the genomic level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

logitcprplot can be used after logistic regression for graphing a component-plus-residual plot (a.k.a. partial residual plot) for a given predictor, including a lowess, local polynomial, restricted cubic spline, fractional polynomial, penalized spline, regression spline, running line, or adaptive variable span running line smooth