28 resultados para Event-based Model
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Tropical wetlands are estimated to represent about 50% of the natural wetland methane (CH4) emissions and explain a large fraction of the observed CH4 variability on timescales ranging from glacial–interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This publication documents a first step in the development of a process-based model of CH4 emissions from tropical floodplains for global applications. For this purpose, the LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was slightly modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially explicit hydrology model PCR-GLOBWB. We introduced new plant functional types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote-sensing data sets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX reproduces the average magnitude of observed net CH4 flux densities for the Amazon Basin. However, the model does not reproduce the variability between sites or between years within a site. Unfortunately, site information is too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. Sensitivity analyses gave insights into the main drivers of floodplain CH4 emission and their associated uncertainties. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr−1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin, modulated emissions by about 20%. Correcting the LPX-simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the full dynamics in CH4 emissions but we proposed solutions to this issue. The interannual variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is accounted for, but still remains lower than in most of the WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results helped identify and prioritize directions towards more accurate estimates of tropical CH4 emissions, and they stress the need for more research to constrain floodplain CH4 emissions and their temporal variability, even before including other fundamental mechanisms such as floating macrophytes or lateral water fluxes.
Resumo:
OBJECTIVE: To develop a behavioural observation method to simultaneously assess distractors and communication/teamwork during surgical procedures through direct, on-site observations; to establish the reliability of the method for long (>3 h) procedures. METHODS: Observational categories for an event-based coding system were developed based on expert interviews, observations and a literature review. Using Cohen's κ and the intraclass correlation coefficient, interobserver agreement was assessed for 29 procedures. Agreement was calculated for the entire surgery, and for the 1st hour. In addition, interobserver agreement was assessed between two tired observers and between a tired and a non-tired observer after 3 h of surgery. RESULTS: The observational system has five codes for distractors (door openings, noise distractors, technical distractors, side conversations and interruptions), eight codes for communication/teamwork (case-relevant communication, teaching, leadership, problem solving, case-irrelevant communication, laughter, tension and communication with external visitors) and five contextual codes (incision, last stitch, personnel changes in the sterile team, location changes around the table and incidents). Based on 5-min intervals, Cohen's κ was good to excellent for distractors (0.74-0.98) and for communication/teamwork (0.70-1). Based on frequency counts, intraclass correlation coefficient was excellent for distractors (0.86-0.99) and good to excellent for communication/teamwork (0.45-0.99). After 3 h of surgery, Cohen's κ was 0.78-0.93 for distractors, and 0.79-1 for communication/teamwork. DISCUSSION: The observational method developed allows a single observer to simultaneously assess distractors and communication/teamwork. Even for long procedures, high interobserver agreement can be achieved. Data collected with this method allow for investigating separate or combined effects of distractions and communication/teamwork on surgical performance and patient outcomes.
Resumo:
Despite numerous studies about nitrogen-cycling in forest ecosystems, many uncertainties remain, especially regarding the longer-term nitrogen accumulation. To contribute to filling this gap, the dynamic process-based model TRACE, with the ability to simulate 15N tracer redistribution in forest ecosystems was used to study N cycling processes in a mountain spruce forest of the northern edge of the Alps in Switzerland (Alptal, SZ). Most modeling analyses of N-cycling and C-N interactions have very limited ability to determine whether the process interactions are captured correctly. Because the interactions in such a system are complex, it is possible to get the whole-system C and N cycling right in a model without really knowing if the way the model combines fine-scale interactions to derive whole-system cycling is correct. With the possibility to simulate 15N tracer redistribution in ecosystem compartments, TRACE features a very powerful tool for the validation of fine-scale processes captured by the model. We first adapted the model to the new site (Alptal, Switzerland; long-term low-dose N-amendment experiment) by including a new algorithm for preferential water flow and by parameterizing of differences in drivers such as climate, N deposition and initial site conditions. After the calibration of key rates such as NPP and SOM turnover, we simulated patterns of 15N redistribution to compare against 15N field observations from a large-scale labeling experiment. The comparison of 15N field data with the modeled redistribution of the tracer in the soil horizons and vegetation compartments shows that the majority of fine-scale processes are captured satisfactorily. Particularly, the model is able to reproduce the fact that the largest part of the N deposition is immobilized in the soil. The discrepancies of 15N recovery in the LF and M soil horizon can be explained by the application method of the tracer and by the retention of the applied tracer by the well developed moss layer, which is not considered in the model. Discrepancies in the dynamics of foliage and litterfall 15N recovery were also observed and are related to the longevity of the needles in our mountain forest. As a next step, we will use the final Alptal version of the model to calculate the effects of climate change (temperature, CO2) and N deposition on ecosystem C sequestration in this regionally representative Norway spruce (Picea abies) stand.
Resumo:
Introduction Prospective memory (PM), the ability to remember to perform intended activities in the future (Kliegel & Jäger, 2007), is crucial to succeed in everyday life. PM seems to improve gradually over the childhood years (Zimmermann & Meier, 2006), but yet little is known about PM competences in young school children in general, and even less is known about factors influencing its development. Currently, a number of studies suggest that executive functions (EF) are potentially influencing processes (Ford, Driscoll, Shum & Macaulay, 2012; Mahy & Moses, 2011). Additionally, metacognitive processes (MC: monitoring and control) are assumed to be involved while optimizing one’s performance (Krebs & Roebers, 2010; 2012; Roebers, Schmid, & Roderer, 2009). Yet, the relations between PM, EF and MC remain relatively unspecified. We intend to empirically examine the structural relations between these constructs. Method A cross-sectional study including 119 2nd graders (mage = 95.03, sdage = 4.82) will be presented. Participants (n = 68 girls) completed three EF tasks (stroop, updating, shifting), a computerised event-based PM task and a MC spelling task. The latent variables PM, EF and MC that were represented by manifest variables deriving from the conducted tasks, were interrelated by structural equation modelling. Results Analyses revealed clear associations between the three cognitive constructs PM, EF and MC (rpm-EF = .45, rpm-MC = .23, ref-MC = .20). A three factor model, as opposed to one or two factor models, appeared to fit excellently to the data (chi2(17, 119) = 18.86, p = .34, remsea = .030, cfi = .990, tli = .978). Discussion The results indicate that already in young elementary school children, PM, EF and MC are empirically well distinguishable, but nevertheless substantially interrelated. PM and EF seem to share a substantial amount of variance while for MC, more unique processes may be assumed.
Resumo:
In order to reconstruct the temperature of the North Greenland Ice Core Project (NGRIP) site, new measurements of δ15N have been performed covering the time period from the beginning of the Holocene to Dansgaard–Oeschger (DO) event 8. Together with previously measured and mostly published δ15N data, we present for the first time a NGRIP temperature reconstruction for the whole last glacial period from 10 to 120 kyr b2k (thousand years before 2000 AD) including every DO event based on δ15N isotope measurements combined with a firn densification and heat diffusion model. The detected temperature rises at the onset of DO events range from 5 °C (DO 25) up to 16.5 °C (DO 11) with an uncertainty of ±3 °C. To bring measured and modelled data into agreement, we had to reduce the accumulation rate given by the NGRIP ss09sea06bm timescale in some periods by 30 to 35%, especially during the last glacial maximum. A comparison between reconstructed temperature and δ18Oice data confirms that the isotopic composition of the stadial was strongly influenced by seasonality. We evidence an anticorrelation between the variations of the δ18Oice sensitivity to temperature (referred to as α) and obliquity in agreement with a simple Rayleigh distillation model. Finally, we suggest that α might be influenced by the Northern Hemisphere ice sheet volume.
Resumo:
The results of a search for pair production of light top squarks are presented, using 4.7 fb(-1) of root s = 7 TeV proton-proton collisions collected with the ATLAS detector at the Large Hadron Collider. This search targets top squarks with masses similar to, or lighter than, the top quark mass. Final states containing exclusively one or two leptons (e, mu), large missing transverse momentum, light-flavour jets and b-jets are used to reconstruct the top squark pair system. Event-based mass scale variables are used to separate the signal from a large t (t) over bar background. No excess over the Standard Model expectations is found. The results are interpreted in the framework of the Minimal Supersymmetric Standard Model, assuming the top squark decays exclusively to a chargino and a b-quark, while requiring different mass relationships between the Supersymmetric particles in the decay chain. Light top squarks with masses between 123-167 GeV are excluded for neutralino masses around 55 GeV.
Resumo:
Soil erosion models and soil erosion risk maps are often used as indicators to assess potential soil erosion in order to assist policy decisions. This paper shows the scientific basis of the soil erosion risk map of Switzerland and its application in policy and practice. Linking a USLE/RUSLE-based model approach (AVErosion) founded on multiple flow algorithms and the unit contributing area concept with an extremely precise and high-resolution digital terrain model (2 m × 2 m grid) using GIS allows for a realistic assessment of the potential soil erosion risk, on single plots, i.e. uniform and comprehensive for the agricultural area of Switzerland (862,579 ha in the valley area and the lower mountain regions). The national or small-scale soil erosion prognosis has thus reached a level heretofore possible only in smaller catchment areas or single plots. Validation was carried out using soil loss data from soil erosion damage mappings in the field from long-term monitoring in different test areas. 45% of the evaluated agricultural area of Switzerland was classified as low potential erosion risk, 12% as moderate potential erosion risk, and 43% as high potential erosion risk. However, many of the areas classified as high potential erosion risk are located at the transition from valley to mountain zone, where many areas are used as permanent grassland, which drastically lowers their current erosion risk. The present soil erosion risk map serves on the one hand to identify and prioritise the high-erosion risk areas, and on the other hand to promote awareness amongst farmers and authorities. It was published on the internet and will be made available to the authorities in digital form. It is intended as a tool for simplifying and standardising enforcement of the legal framework for soil erosion prevention in Switzerland. The work therefore provides a successful example of cooperation between science, policy and practice.
Resumo:
Plant cell expansion is controlled by a fine-tuned balance between intracellular turgor pressure, cell wall loosening and cell wall biosynthesis. To understand these processes, it is important to gain in-depth knowledge of cell wall mechanics. Pollen tubes are tip-growing cells that provide an ideal system to study mechanical properties at the single cell level. With the available approaches it was not easy to measure important mechanical parameters of pollen tubes, such as the elasticity of the cell wall. We used a cellular force microscope (CFM) to measure the apparent stiffness of lily pollen tubes. In combination with a mechanical model based on the finite element method (FEM), this allowed us to calculate turgor pressure and cell wall elasticity, which we found to be around 0.3 MPa and 20–90 MPa, respectively. Furthermore, and in contrast to previous reports, we showed that the difference in stiffness between the pollen tube tip and the shank can be explained solely by the geometry of the pollen tube. CFM, in combination with an FEM-based model, provides a powerful method to evaluate important mechanical parameters of single, growing cells. Our findings indicate that the cell wall of growing pollen tubes has mechanical properties similar to rubber. This suggests that a fully turgid pollen tube is a relatively stiff, yet flexible cell that can react very quickly to obstacles or attractants by adjusting the direction of growth on its way through the female transmitting tissue.
Resumo:
Für das wirtschaftliche Wachstum und die Innovationskraft einer Volkswirtschaft sind junge Unternehmen von herausragender Bedeutung. Ein wichtiges Ziel von Politik und Wirtschaft muss folglich die Sensibilisierung und Förderung potenzieller Gründer sein. Die vorliegende Untersuchung geht der Frage nach, ob eine universitäre Gründungsausbildung die Gründungsabsicht von Studierenden positiv beeinflussen kann. Aufbauend auf dem intentionsbasierten Modell von Krueger /Carsrud (1993) wurden im Rahmen einer Befragung an der TU Dortmund 111 Studierende der Wirtschaftswissenschaften zu ihren Gründungsabsichten befragt. Es zeigte sich, dass die Gründungsabsicht durch den Besuch von Veranstaltungen zum Gründungsmanagement deutlich gesteigert werden kann. Für die deutsche Wirtschafts- und Bildungspolitik ergibt sich aus den Ergebnissen die Handlungsempfehlung, die universitäre Gründungsausbildung auszubauen und intensiv zu fördern.