7 resultados para Ethanol concentrations
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In the last century, several mathematical models have been developed to calculate blood ethanol concentrations (BAC) from the amount of ingested ethanol and vice versa. The most common one in the field of forensic sciences is Widmark's equation. A drinking experiment with 10 voluntary test persons was performed with a target BAC of 1.2 g/kg estimated using Widmark's equation as well as Watson's factor. The ethanol concentrations in the blood were measured using headspace gas chromatography/flame ionization and additionally with an alcohol Dehydrogenase (ADH)-based method. In a healthy 75-year-old man a distinct discrepancy between the intended and the determined blood ethanol concentration was observed. A blood ethanol concentration of 1.83 g/kg was measured and the man showed signs of intoxication. A possible explanation for the discrepancy is a reduction of the total body water content in older people. The incident showed that caution is advised when using the different mathematical models in aged people. When estimating ethanol concentrations, caution is recommended with calculated results due to potential discrepancies between mathematical models and biological systems
Resumo:
The forensic utility of fatty acid ethyl esters (FAEEs) in dried blood spots (DBS) as short-term confirmatory markers for ethanol intake was examined. An LC-MS/MS method for the determination of FAEEs in DBS was developed and validated to investigate FAEE formation and elimination in a drinking study, whereby eight subjects ingested 0.66-0.84 g/kg alcohol to reach blood alcohol concentrations (BAC) of 0.8 g/kg. Blood was taken every 1.5-2 h, BAC was determined, and dried blood spots were prepared, with 50 μL of blood, for the determination of FAEEs. Lower limits of quantitation (LLOQ) were between 15 and 37 ng/mL for the four major FAEEs. Validation data are presented in detail. In the drinking study, ethyl palmitate and ethyl oleate proved to be the two most suitable markers for FAEE determination. Maximum FAEE concentrations were reached in samples taken 2 or 4 h after the start of drinking. The following mean peak concentrations (c̅ max) were reached: ethyl myristate 14 ± 4 ng/mL, ethyl palmitate 144 ± 35 ng/mL, ethyl oleate 125 ± 55 ng/mL, ethyl stearate 71 ± 21 ng/mL, total FAEEs 344 ± 91 ng/mL. Detectability of FAEEs was found to be on the same time scale as BAC. In liquid blood samples containing ethanol, FAEE concentrations increase post-sampling. This study shows that the use of DBS fixation prevents additional FAEE formation in blood samples containing ethanol. Positive FAEE results obtained by DBS analysis can be used as evidence for the presence of ethanol in the original blood sample. Graphical Abstract Time courses for fatty acid ethyl ester (FAEE) concentrations in DBS and ethanol concentrations for subject 1 over a period of 7 h. Ethanol ingestion occured during the first hour of the time course.
Resumo:
In abstinence maintenance programs, for reissuing the driving licence and in workplace monitoring programs abstinence from ethanol and its proof are demanded. Various monitoring programs that mainly use ethyl glucuronide (EtG) as alcohol consumption marker have been established. To abstain from ethanol, but not from the taste of alcoholic beverages, in particular non-alcoholic beer has become more and more popular. In Germany, these "alcohol-free" beverages may still have an ethanol content of up to 0.5vol.% without the duty of declaration. Due to severe negative consequences resulting from positive EtG tests, a drinking experiment with 2.5L of non-alcoholic beer per person was performed to address the question of measurable concentrations of the direct metabolites EtG and EtS (ethyl sulphate) in urine and blood. Both alcohol consumption markers - determined by LC-MS/MS - were found in high concentrations: maximum concentrations in urine found in three volunteers were EtG 0.30-0.87mg/L and EtS 0.04-0.07mg/L, i.e., above the often applied cut-off value for the proof of abstinence of 0.1mg EtG/L. In the urine samples of one further volunteer, EtG and EtS concentrations cumulated over-night and reached up to 14.1mg/L EtG and 16.1mg/L EtS in the next morning's urine. Ethanol concentrations in blood and urine samples were negative (determined by HS-GC-FID and by an ADH-based method).
Resumo:
delta subunit-containing gamma-aminobutyric acid, type A (GABA(A))receptors are expressed extrasynaptically and mediate tonic inhibition. In cerebellar granule cells, they often form receptors together with alpha(1) and/or alpha(6) subunits. We were interested in determining the architecture of receptors containing both subunits. We predefined the subunit arrangement of several different GABA(A) receptor pentamers by concatenation. These receptors composed of alpha(1), alpha(6), beta(3), and delta subunits were expressed in Xenopus oocytes. Currents elicited in response to GABA were determined in the presence and absence of 3alpha,21-dihydroxy-5alpha-pregnan-20-one (THDOC) or ethanol, or currents were elicited by 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP). Several subunit configurations formed active channels. We therefore conclude that delta can assume multiple positions in a receptor pentamer made up of alpha(1), alpha(6), beta(3), and delta subunits. The different receptors differ in their functional properties. Functional expression of one receptor type was only evident in the combined presence of the neurosteroid THDOC with the channel agonist GABA. Most, but not all, receptors active with GABA/THDOC responded to THIP. None of the receptors was modulated by ethanol concentrations up to 30 mm. Several observations point to a preferred position of delta subunits between two alpha subunits in alpha(1)alpha(6)beta(3)delta receptors. This property is shared by alpha(1)beta(3)delta and alpha(6)beta(3)delta receptors, but there are differences in the additionally expressed isoforms.
Resumo:
To clarify the circumstances of death, the degree of inebriation is of importance in many cases, but for several reasons the determination of the ethanol concentration in post-mortem samples can be challenging and the synopsis of ethanol and the direct consumption markers ethyl glucuronide (EtG) and ethyl sulphate (EtS) has proved to be useful. The use of a rather stable matrix like vitreous humor offers further advantages. The aim of this study was to determine the concentrations of ethanol and the biomarkers in the robust matrix of vitreous humor and to compare them with the respective levels in peripheral venous blood and urine. Samples of urine, blood from the femoral vein and vitreous humor were taken from 26 deceased with suspected ethanol consumption prior to death and analyzed for ethanol, EtS and EtG. In the urine samples creatinine was also determined. The personal data, the circumstances of death, the post-mortem interval and the information about ethanol consumption prior to death were recorded. EtG and EtS analysis in urine was performed by LC-ESI-MS/MS, creatinine concentration was determined using the Jaffé reaction and ethanol was detected by HS-GC-FID and by an ADH-based method. In general, the highest concentrations of the analytes were found in urine and showed statistical significance. The mean concentrations of EtG were 62.8mg/L (EtG100 206.5mg/L) in urine, 4.3mg/L in blood and 2.1mg/L in vitreous humor. EtS was found in the following mean concentrations: 54.6mg/L in urine (EtS100 123.1mg/L), 1.8mg/L in blood and 0.9mg/L in vitreous humor. Ethanol was detected in more vitreous humor samples (mean concentration 2.0g/kg) than in blood and urine (mean concentration 1.6g/kg and 2.1g/kg respectively). There was no correlation between the ethanol and the marker concentrations and no statistical conclusions could be drawn between the markers and matrices.
Resumo:
Chronic ethanol consumption is a strong risk factor for the development of certain types of cancer including those of the upper aerodigestive tract, the liver, the large intestine and the female breast. Multiple mechanisms are involved in alcohol-mediated carcinogenesis. Among those the action of acetaldehyde (AA), the first metabolite of ethanol oxidation is of particular interest. AA is toxic, mutagenic and carcinogenic in animal experiments. AA binds to DNA and forms carcinogenic adducts. Direct evidence of the role of AA in alcohol-associated carcinogenesis derived from genetic linkage studies in alcoholics. Polymorphisms or mutations of genes coding for AA generation or detoxifying enzymes resulting in elevated AA concentrations are associated with increased cancer risk. Approximately 40% of Japanese, Koreans or Chinese carry the AA dehydrogenase 2*2 (ALDH2*2) allele in its heterozygous form. This allele codes for an ALDH2 enzyme with little activity leading to high AA concentrations after the consumption of even small amounts of alcohol. When individuals with this allele consume ethanol chronically, a significant increased risk for upper alimentary tract and colorectal cancer is noted. In Caucasians, alcohol dehydrogenase 1C*1 (ADH1C*1) allele encodes for an ADH isoenzyme which produces 2.5 times more AA than the corresponding allele ADH1C*2. In studies with moderate to high alcohol intake, ADH1C*1 allele frequency and rate of homozygosity was found to be significantly associated with an increased risk for cancer of the upper aerodigestive tract, the liver, the colon and the female breast. These studies underline the important role of acetaldehyde in ethanol-mediated carcinogenesis.
Resumo:
Delta (delta) subunit containing GABA(A) receptors are expressed extra-synaptically and mediate tonic inhibition. In cerebellar granule cells, they often form a receptor together with alpha(6) subunits. We were interested to determine the architecture of these receptors. We predefined the subunit arrangement of 24 different GABA(A) receptor pentamers by subunit concatenation. These receptors (composed of alpha(6), beta(3) and delta subunits) were expressed in Xenopus oocytes and their electrophysiological properties analyzed. Currents elicited in response to GABA were determined in presence and absence of 3alpha, 21-dihydroxy-5alpha-pregnan-20-one and to 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol. alpha(6)-beta(3)-alpha(6)/delta receptors showed a substantial response to GABA alone. Three receptors, beta(3)-alpha(6)-delta/alpha(6)-beta(3), alpha(6)-beta(3)-alpha(6)/beta(3)-delta and beta(3)-delta-beta(3)/alpha(6)-beta(3), were only uncovered in the combined presence of the neurosteroid 3alpha, 21-dihydroxy-5alpha-pregnan-20-one with GABA. All four receptors were activated by 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol. None of the functional receptors was modulated by physiological concentrations (up to 30 mM) of ethanol. GABA concentration response curves indicated that the delta subunit can contribute to the formation of an agonist site. We conclude from the investigated receptors that the delta subunit can assume multiple positions in a receptor pentamer composed of alpha(6), beta(3) and delta subunits.