4 resultados para Estoppel by record
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To assess the long-term effect of HAART on non-Hodgkin lymphoma (NHL) incidence in people with HIV (PHIV). DESIGN: Follow-up of the Swiss HIV Cohort Study (SHCS). METHODS: Between 1984 and 2006, 12 959 PHIV contributed a total of 75 222 person-years (py), of which 36 787 were spent under HAART. Among these PHIV, 429 NHL cases were identified from the SHCS dataset and/or by record linkage with Swiss Cantonal Cancer Registries. Age- and gender-standardized incidence was calculated and Cox regression was used to estimate hazard ratios (HR). RESULTS: NHL incidence reached 13.6 per 1000 py in 1993-1995 and declined to 1.8 in 2002-2006. HAART use was associated with a decline in NHL incidence [HR = 0.26; 95% confidence interval (CI), 0.20-0.33], and this decline was greater for primary brain lymphomas than other NHL. Among non-HAART users, being a man having sex with men, being 35 years of age or older, or, most notably, having low CD4 cell counts at study enrollment (HR = 12.26 for < 50 versus >or= 350 cells/microl; 95% CI, 8.31-18.07) were significant predictors of NHL onset. Among HAART users, only age was significantly associated with NHL risk. The HR for NHL declined steeply in the first months after HAART initiation (HR = 0.46; 95% CI, 0.27-0.77) and was 0.12 (95% CI, 0.05-0.25) 7 to10 years afterwards. CONCLUSIONS: HAART greatly reduced the incidence of NHL in PHIV, and the influence of CD4 cell count on NHL risk. The beneficial effect remained strong up to 10 years after HAART initiation.
Resumo:
Abstract. A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9–56.5 %), total organic carbon (TOC; n = 309; gradient: 0–2.9 %), and total inorganic carbon (TIC; n = 152; gradient: 0–0.4 %) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El’gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2 CV = 0.86–0.91 and low root mean square error of crossvalidation (RMSECV) (3.1–7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El’gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6–3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was �3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial–interglacial cycles during the Quaternary.
Resumo:
Abstract. Rock magnetic, biochemical and inorganic records of the sediment cores PG1351 and Lz1024 from Lake El’gygytgyn, Chukotka peninsula, Far East Russian Arctic, were subject to a hierarchical agglomerative cluster analysis in order to refine and extend the pattern of climate modes as defined by Melles et al. (2007). Cluster analysis of the data obtained from both cores yielded similar results, differentiating clearly between the four climate modes warm, peak warm, cold and dry, and cold and moist. In addition, two transitional phases were identified, representing the early stages of a cold phase and slightly colder conditions during a warm phase. The statistical approach can thus be used to resolve gradual changes in the sedimentary units as an indicator of available oxygen in the hypolimnion in greater detail. Based upon cluster analyses on core Lz1024, the published succession of climate modes in core PG1351, covering the last 250 ka, was modified and extended back to 350 ka. Comparison to the marine oxygen isotope (�18O) stack LR04 (Lisiecki and Raymo, 2005) and the summer insolation at 67.5� N, with the extended Lake El’gygytgyn parameter records of magnetic susceptibility (�LF), total organic carbon content (TOC) and the chemical index of alteration (CIA; Minyuk et al., 2007), revealed that all stages back to marine isotope stage (MIS) 10 and most of the substages are clearly reflected in the pattern derived from the cluster analysis.
Resumo:
The Greenland NEEM (North Greenland Eemian Ice Drilling) operation in 2010 provided the first opportunity to combine trace-gas measurements by laser spectroscopic instruments and continuous-flow analysis along a freshly drilled ice core in a field-based setting. We present the resulting atmospheric methane (CH4) record covering the time period from 107.7 to 9.5 ka b2k (thousand years before 2000 AD). Companion discrete CH4 measurements are required to transfer the laser spectroscopic data from a relative to an absolute scale. However, even on a relative scale, the high-resolution CH4 data set significantly improves our knowledge of past atmospheric methane concentration changes. New significant sub-millennial-scale features appear during interstadials and stadials, generally associated with similar changes in water isotopic ratios of the ice, a proxy for local temperature. In addition to the midpoint of Dansgaard–Oeschger (D/O) CH4 transitions usually used for cross-dating, sharp definition of the start and end of these events brings precise depth markers (with ±20 cm uncertainty) for further cross-dating with other palaeo- or ice core records, e.g. speleothems. The method also provides an estimate of CH4 rates of change. The onsets of D/O events in the methane signal show a more rapid rate of change than their endings. The rate of CH4 increase associated with the onsets of D/O events progressively declines from 1.7 to 0.6 ppbv yr−1 in the course of marine isotope stage 3. The largest observed rate of increase takes place at the onset of D/O event #21 and reaches 2.5 ppbv yr−1.