18 resultados para Epistemic entrenchment
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Justification Logic studies epistemic and provability phenomena by introducing justifications/proofs into the language in the form of justification terms. Pure justification logics serve as counterparts of traditional modal epistemic logics, and hybrid logics combine epistemic modalities with justification terms. The computational complexity of pure justification logics is typically lower than that of the corresponding modal logics. Moreover, the so-called reflected fragments, which still contain complete information about the respective justification logics, are known to be in~NP for a wide range of justification logics, pure and hybrid alike. This paper shows that, under reasonable additional restrictions, these reflected fragments are NP-complete, thereby proving a matching lower bound. The proof method is then extended to provide a uniform proof that the corresponding full pure justification logics are $\Pi^p_2$-hard, reproving and generalizing an earlier result by Milnikel.
Resumo:
We examine the board overlap among firms listed in Switzerland. Collusion, managerial entrenchment, and financial participation cannot explain it. The overlap appears to be induced by banks and by the accumulation of seats by the most popular directors. We also document that seat accumulation is negatively related to firm value, possibly because of the conflicts of interest that multiple directorships induce and the time constraints directors face. Contrary to popular beliefs, however, the directors of traded firms do not generally hold more than one mandate in other traded firms. They do hold multiple seats in non-traded firms.
Resumo:
It is often claimed that scientists can obtain new knowledge about nature by running computer simulations. How is this possible? I answer this question by arguing that computer simulations are arguments. This view parallels Norton’s argument view about thought experiments. I show that computer simulations can be reconstructed as arguments that fully capture the epistemic power of the simulations. Assuming the extended mind hypothesis, I furthermore argue that running the computer simulation is to execute the reconstructing argument. I discuss some objections and reject the view that computer simulations produce knowledge because they are experiments. I conclude by comparing thought experiments and computer simulations, assuming that both are arguments.
Resumo:
Monte Carlo simulations arrive at their results by introducing randomness, sometimes derived from a physical randomizing device. Nonetheless, we argue, they open no new epistemic channels beyond that already employed by traditional simulations: the inference by ordinary argumentation of conclusions from assumptions built into the simulations. We show that Monte Carlo simulations cannot produce knowledge other than by inference, and that they resemble other computer simulations in the manner in which they derive their conclusions. Simple examples of Monte Carlo simulations are analysed to identify the underlying inferences.