121 resultados para Epilepsy.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Assessment of language dominance with functional magnetic resonance imaging (fMRI) and neuropsychological evaluation is often used prior to epilepsy surgery. This study explores whether language lateralization and cognitive performance are systematically related in young patients with focal epilepsy. METHODS: Language fMRI and neuropsychological data (language, visuospatial functions, and memory) of 40 patients (7-18 years of age) with unilateral, refractory focal epilepsy in temporal and/or frontal areas of the left (n = 23) or right hemisphere (n = 17) were analyzed. fMRI data of 18 healthy controls (7-18 years) served as a normative sample. A laterality index was computed to determine the lateralization of activation in three regions of interest (frontal, parietal, and temporal). RESULTS: Atypical language lateralization was demonstrated in 12 (30%) of 40 patients. A correlation between language lateralization and verbal memory performance occurred in patients with left-sided epilepsy over all three regions of interest, with bilateral or right-sided language lateralization being correlated with better verbal memory performance (Word Pairs Recall: frontal r = -0.4, p = 0.016; parietal r = -0.4, p = 0.043; temporal r = -0.4, p = 0.041). Verbal memory performance made the largest contribution to language lateralization, whereas handedness and side of seizures did not contribute to the variance in language lateralization. DISCUSSION: This finding reflects the association between neocortical language and hippocampal memory regions in patients with left-sided epilepsy. Atypical language lateralization is advantageous for verbal memory performance, presumably a result of transfer of verbal memory function. In children with focal epilepsy, verbal memory performance provides a better idea of language lateralization than handedness and side of epilepsy and lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Magnetic resonance imaging (MRI) is required for the investigation of surgically intractable epilepsy. In addition to the standard MRI techniques, perfusion sequences can be added to improve visualization of underlying pathological changes. Arterial spin-labeling (ASL) MRI perfusion does not require contrast administration and, for this reason, may have advantages in these patients. METHODS: We report here on 16 patients with epilepsy who underwent MRI of the brain with ASL and positron emission tomography (PET). RESULTS: Despite a slightly reduced resolution with ASL, we found a correlation between ASL, PET and electrophysiological data, with hypoperfusion on ASL that corresponded with hypoperfusion on interictal PET. CONCLUSION: Given the correlation between ASL and PET and electrophysiology, perfusion with ASL could become part of the standard work-up in patients with epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous EEG/fMRI is an effective noninvasive tool for identifying and localizing the SOZ in patients with focal epilepsy. In this study, we evaluated different thresholding strategies in EEG/fMRI for the assessment of hemodynamic responses to IEDs in the SOZ of drug-resistant epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here the case of an adolescent female near-drowning victim who was reportedly discovered submerged and unconscious by family members in a whirlpool spa. Physical examination revealed extensive posterior soft tissue bruising, which raised the suspicion of nonaccidental trauma. Detailed forensic evaluation of the injuries and the scene proved that the soft tissue findings represented an unusual manifestation of whirlpool-spa suction-vent injury. Medical evaluation indicated that epilepsy onset might have contributed to the near-drowning, although forensic evaluation of this possibility was less convincing. In this article we review these rare but important injuries, which have the potential to be confused with child abuse, and detail the atypical presentation and clinically presumed etiologic event in our case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical and experimental evidence indicates that inflammatory processes contribute to the pathophysiology of epilepsy, but underlying mechanisms remain mostly unknown. Using immunohistochemistry for CD45 (common leukocyte antigen) and CD3 (T-lymphocytes), we show here microglial activation and infiltration of leukocytes in sclerotic tissue from patients with mesial temporal lobe epilepsy (TLE), as well as in a model of TLE (intrahippocampal kainic acid injection), characterized by spontaneous, nonconvulsive focal seizures. Using specific markers of lymphocytes, microglia, macrophages, and neutrophils in kainate-treated mice, we investigated with pharmacological and genetic approaches the contribution of innate and adaptive immunity to kainate-induced inflammation and neurodegeneration. Furthermore, we used EEG analysis in mutant mice lacking specific subsets of lymphocytes to explore the significance of inflammatory processes for epileptogenesis. Blood-brain barrier disruption and neurodegeneration in the kainate-lesioned hippocampus were accompanied by sustained ICAM-1 upregulation, microglial cell activation, and infiltration of CD3(+) T-cells. Moreover, macrophage infiltration was observed, selectively in the dentate gyrus where prominent granule cell dispersion was evident. Unexpectedly, depletion of peripheral macrophages by systemic clodronate liposome administration affected granule cell survival. Neurodegeneration was aggravated in kainate-lesioned mice lacking T- and B-cells (RAG1-knock-out), because of delayed invasion by Gr-1(+) neutrophils. Most strikingly, these mutant mice exhibited early onset of spontaneous recurrent seizures, suggesting a strong impact of immune-mediated responses on network excitability. Together, the concerted action of adaptive and innate immunity triggered locally by intrahippocampal kainate injection contributes seizure-suppressant and neuroprotective effects, shedding new light on neuroimmune interactions in temporal lobe epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seizures are often the presenting symptoms of a cerebral tumor and may precede its diagnosis by many years. The article under evaluation searched two large English registries for patients admitted for new-onset epilepsy. The risk of subsequently being diagnosed with a malignant brain tumor was found to be 26-fold higher compared with controls, persisted over many years and was accentuated in young patients. Recently, surgical advances have led to a significant decrease in surgical morbidities, making surgery the first treatment option for gliomas, especially low-grade gliomas. This paradigm shift warrants a consequent diagnostic workup (MRI) in patients at risk for low-grade glioma - that is, patients with new-onset epilepsy. The study is discussed in the context of the ongoing debate on neuroimaging after new-onset epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auditory hallucinations (AH) occur in various neurological and psychiatric disorders. In psychosis, increased neuronal activity in the primary auditory cortex (PAC) contributes to AH. We investigated functional neuroanatomy of epileptic hallucinations by measuring cerebral perfusion in three patients with AH during simple partial status epilepticus. Hyperperfusion in the temporal lobe covering the PAC occurred in all patients. Our perfusion data support the hypothesis of PAC being a constituting element in the genesis of AH independent of their aetiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To derive tests for randomness, nonlinear-independence, and stationarity, we combine surrogates with a nonlinear prediction error, a nonlinear interdependence measure, and linear variability measures, respectively. We apply these tests to intracranial electroencephalographic recordings (EEG) from patients suffering from pharmacoresistant focal-onset epilepsy. These recordings had been performed prior to and independent from our study as part of the epilepsy diagnostics. The clinical purpose of these recordings was to delineate the brain areas to be surgically removed in each individual patient in order to achieve seizure control. This allowed us to define two distinct sets of signals: One set of signals recorded from brain areas where the first ictal EEG signal changes were detected as judged by expert visual inspection ("focal signals") and one set of signals recorded from brain areas that were not involved at seizure onset ("nonfocal signals"). We find more rejections for both the randomness and the nonlinear-independence test for focal versus nonfocal signals. In contrast more rejections of the stationarity test are found for nonfocal signals. Furthermore, while for nonfocal signals the rejection of the stationarity test increases the rejection probability of the randomness and nonlinear-independence test substantially, we find a much weaker influence for the focal signals. In consequence, the contrast between the focal and nonfocal signals obtained from the randomness and nonlinear-independence test is further enhanced when we exclude signals for which the stationarity test is rejected. To study the dependence between the randomness and nonlinear-independence test we include only focal signals for which the stationarity test is not rejected. We show that the rejection of these two tests correlates across signals. The rejection of either test is, however, neither necessary nor sufficient for the rejection of the other test. Thus, our results suggest that EEG signals from epileptogenic brain areas are less random, more nonlinear-dependent, and more stationary compared to signals recorded from nonepileptogenic brain areas. We provide the data, source code, and detailed results in the public domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One quadrillion synapses are laid in the first two years of postnatal construction of the human brain, which are then pruned until age 10 to 500 trillion synapses composing the final network. Genetic epilepsies are the most common neurological diseases with onset during pruning, affecting 0.5% of 2-10-year-old children, and these epilepsies are often characterized by spontaneous remission. We previously described a remitting epilepsy in the Lagotto romagnolo canine breed. Here, we identify the gene defect and affected neurochemical pathway. We reconstructed a large Lagotto pedigree of around 34 affected animals. Using genome-wide association in 11 discordant sib-pairs from this pedigree, we mapped the disease locus to a 1.7 Mb region of homozygosity in chromosome 3 where we identified a protein-truncating mutation in the Lgi2 gene, a homologue of the human epilepsy gene LGI1. We show that LGI2, like LGI1, is neuronally secreted and acts on metalloproteinase-lacking members of the ADAM family of neuronal receptors, which function in synapse remodeling, and that LGI2 truncation, like LGI1 truncations, prevents secretion and ADAM interaction. The resulting epilepsy onsets at around seven weeks (equivalent to human two years), and remits by four months (human eight years), versus onset after age eight in the majority of human patients with LGI1 mutations. Finally, we show that Lgi2 is expressed highly in the immediate post-natal period until halfway through pruning, unlike Lgi1, which is expressed in the latter part of pruning and beyond. LGI2 acts at least in part through the same ADAM receptors as LGI1, but earlier, ensuring electrical stability (absence of epilepsy) during pruning years, preceding this same function performed by LGI1 in later years. LGI2 should be considered a candidate gene for common remitting childhood epilepsies, and LGI2-to-LGI1 transition for mechanisms of childhood epilepsy remission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS). We addressed the issue of whether and how synchrotron radiotherapeutic treatment suppresses epileptic activities in neuronal networks. IntMRT was used to target the somatosensory cortex (S1Cx), a region involved in seizure generation in the GAERS. The antiepileptic mechanisms were investigated by recording multisite local-field potentials and the intracellular activity of irradiated S1Cx pyramidal neurons in vivo. MRI and histopathological images displayed precise and sharp dose deposition and revealed no impairment of surrounding tissues. Local-field potentials from behaving animals demonstrated a quasi-total abolition of epileptiform activities within the target. The irradiated S1Cx was unable to initiate seizures, whereas neighboring non-irradiated cortical and thalamic regions could still produce pathological oscillations. In vivo intracellular recordings showed that irradiated pyramidal neurons were strongly hyperpolarized and displayed a decreased excitability and a reduction of spontaneous synaptic activities. These functional alterations explain the suppression of large-scale synchronization within irradiated cortical networks. Our work provides the first post-irradiation electrophysiological recordings of individual neurons. Altogether, our data are a critical step towards understanding how X-ray radiation impacts neuronal physiology and epileptogenic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focal onset epilepsies most often occur in the temporal lobes. To improve diagnosis and therapy of patients suffering from pharmacoresistant temporal lobe epilepsy it is highly important to better understand the underlying functional and structural networks. In mesial temporal lobe epilepsy (MTLE) widespread functional networks are involved in seizure generation and propagation. In this study we have analyzed the spatial distribution of hemodynamic correlates (HC) to interictal epileptiform discharges on simultaneous EEG/fMRI recordings and relative grey matter volume (rGMV) reductions in 10 patients with MTLE. HC occurred beyond the seizure onset zone in the hippocampus, in the ipsilateral insular/operculum, temporo-polar and lateral neocortex, cerebellum, along the central sulcus and bilaterally in the cingulate gyrus. rGMV reductions were detected in the middle temporal gyrus, inferior temporal gyrus and uncus to the hippocampus, the insula, the posterior cingulate and the anterior lobe of the cerebellum. Overlaps between HC and decreased rGMV were detected along the mesolimbic network ipsilateral to the seizure onset zone. We conclude that interictal epileptic activity in MTLE induces widespread metabolic changes in functional networks involved in MTLE seizure activity. These functional networks are spatially overlapping with areas that show a reduction in relative grey matter volumes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of a high-density neural recording system targeting epilepsy monitoring is presented. Circuit challenges and techniques are discussed to optimize the amplifier topology and the included OTA. A new platform supporting active recording devices targeting wireless and high-resolution focus localization in epilepsy diagnosis is also proposed. The post-layout simulation results of an amplifier dedicated to this application are presented. The amplifier is designed in a UMC 0.18µm CMOS technology, has an NEF of 2.19 and occupies a silicon area of 0.038 mm(2), while consuming 5.8 µW from a 1.8-V supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a patient who developed, from 5 months of age, multiple seizure types, including myoclonic, associated with severe psychomotor delay, leading to the diagnosis of Dravet syndrome. Over the years, he developed refractory epilepsy and was implanted with a vagus nerve stimulator at the age of 19. After 3 months, he experienced a progressive improvement of partial and generalized seizures, with a >90% reduction, and better alertness. This meaningful clinical improvement is discussed in the light of the sudden unexpected death in epilepsy risk, which is high in this setting, and seems remarkably diminished in our patient in view of the reduction of generalized convulsions.