15 resultados para Environmental management assessment

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted on the highlands of Ethiopia to identify and analyse the factors determining the adoption of environmental management measures. In 1985, Ethiopia was classified into low –and high-potential areas based on the suitability of the natural environment for rain-fed agriculture. To address these objectives, case study areas were selected from low-potential and high-potential areas randomly. Data were collected through face-to-face interview and key informants, focus group discussion and field observation. In the low-potential areas, the physical environment ‒ particularly soil and forest environments have shown substantial recovery. Similarly, the water environment has improved. However, in the high-potential areas sampled, these resources are still being degraded. Clear understanding of the benefits of soil conservation structures by farmers, active involvement and technical support from the government and full and genuine participation of farmers in communal environmental resources management activities were found to be main factors in the adoption of environmental management measures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverseNOEC (no observed effect concentration) or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38-55% (comparable to published CVs of 19-58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the "biomarkers as signposts" approach is a pragmatic way forward in the current risk assessment of EDCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article describes the outcome and follow-up discussions of an expert group meeting (Amsterdam, October 9, 2009) on the applicability of toxicity profiling for diagnostic environmental risk assessment. A toxicity profile was defined as a toxicological "fingerprint" of a sample, ranging from a pure compound to a complex mixture, obtained by testing the sample or its extract for its activity toward a battery of biological endpoints. The expert group concluded that toxicity profiling is an effective first tier tool for screening the integrated hazard of complex environmental mixtures with known and unknown toxicologically active constituents. In addition, toxicity profiles can be used for prioritization of sampling locations, for identification of hot spots, and--in combination with effect-directed analysis (EDA) or toxicity identification and evaluation (TIE) approaches--for establishing cause-effect relationships by identifying emerging pollutants responsible for the observed toxic potency. Small volume in vitro bioassays are especially applicable for these purposes, as they are relatively cheap and fast with costs comparable to chemical analyses, and the results are toxicologically more relevant and more suitable for realistic risk assessment. For regulatory acceptance in the European Union, toxicity profiling terminology should keep as close as possible to the European Water Framework Directive (WFD) terminology, and validation, standardization, statistical analyses, and other quality aspects of toxicity profiling should be further elaborated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Managing land sustainably is a huge challenge, especially under harsh climatic conditions such as those found in drylands. The socio-economic situation can also pose challenges, as dryland regions are often characterized by remoteness, marginality, low-productive farming, weak institutions, and even conflict. With threats from climate change, disputes over water, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) measures will only increase in the future. Within the EU-funded DESIRE project, researchers and stakeholders jointly identified existing SLM technologies and approaches in 17 dryland study sites located in the Mediterranean and around the world. In order to evaluate and share this valuable SLM experience, local researchers documented the SLM technologies and approaches in collaboration with land users, utilizing the internationally recognized WOCAT questionnaires. This article provides an analysis of 30 technologies and 8 approaches, enabling an initial evaluation of how SLM addresses prevalent dryland threats, such as water scarcity, soil degradation, vegetation degradation and low production, climate change, resource use conflicts, and migration. Among the impacts attributed to the documented technologies, those mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Favorable local-scale cost–benefit relationships were mainly found when considered over the long term. Nevertheless, SLM was found to improve people’s livelihoods and prevent further outmigration. More field research is needed to reinforce expert assessments of SLM impacts and provide the necessary evidence-based rationale for investing in SLM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research on ecosystem services has become a dominant field within environmental management, framing the way in which human–nature relationships are understood and managed. Although ecosystem services are usually defined as ‘the benefits that humans receive from nature’, our work shows that most services are actually co-produced by a mixture of natural capital and various forms of social, human, financial and technological capital. Here, we review how ecosystem services are co-produced, and then we assess how this affects the quantity, quality, trade-offs, resilience and the equity of the distribution of ecosystem services. Then we discuss the implications of co-production for sustainability. Finally, we present some challenges for an adequate consideration of co-production within the assessment of ecosystem services.