10 resultados para Environmental gradient

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ecological speciation is defined as the emergence of reproductive isolation as a direct or indirect consequence of divergent ecological adaptation. Several empirical examples of ecological speciation have been reported in the literature which very often involve adaptation to biotic resources. In this review, we investigate whether adaptation to different thermal habitats could also promote speciation and try to assess the importance of such processes in nature. Our survey of the literature identified 16 animal and plant systems where divergent thermal adaptation may underlie (partial) reproductive isolation between populations or may allow the stable coexistence of sibling taxa. In many of the systems, the differentially adapted populations have a parapatric distribution along an environmental gradient. Isolation often involves extrinsic selection against locally maladapted parental or hybrid genotypes, and additional pre- or postzygotic barriers may be important. Together, the identified examples strongly suggest that divergent selection between thermal environments is often strong enough to maintain a bimodal genotype distribution upon secondary contact. What is less clear from the available data is whether it can also be strong enough to allow ecological speciation in the face of gene flow through reinforcement-like processes. It is possible that intrinsic features of thermal gradients or the genetic basis of thermal adaptation make such reinforcement-like processes unlikely but it is equally possible that pertinent systems are understudied. Overall, our literature survey highlights (once again) the dearth of studies that investigate similar incipient species along the continuum from initial divergence to full reproductive isolation and studies that investigate all possible reproductive barriers in a given system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate, land use and fire are strong determinants of plant diversity, potentially resulting in local extinctions, including rare endemic and economically valuable species. While climate and land use are decisive for vegetation composition and thus the species pool, fire disturbance can lead to landscape fragmentation, affecting the provisioning of important ecosystem services such as timber and raw natural resources. We use multi-proxy palaeoecological data with high taxonomic and temporal resolution across an environmental gradient to assess the long-term impact of major climate shifts, land use and fire disturbance on past vegetation openness and plant diversity (evenness and richness). Evenness of taxa is inferred by calculating the probability of interspecific encounter (PIE) of pollen and spores and species richness by palynological richness (PRI). To account for evenness distortions of PRI, we developed a new palaeodiversity measure, which is evenness-detrended palynological richness (DE-PRI). Reconstructed species richness increases from north to south regardless of time, mirroring the biodiversity increase across the gradient from temperate deciduous to subtropical evergreen vegetation. Climatic changes after the end of the last ice age contributed to biodiversity dynamics, usually by promoting species richness and evenness in response to warming. The data reveal that the promotion of diverse open-land ecosystems increased when human disturbance became determinant, while forests became less diverse. Our results imply that the today’s biodiversity has been shaped by anthropogenic forcing over the millennia. Future management strategies aiming at a successful conservation of biodiversity should therefore consider the millennia-lasting role of anthropogenic fire and human activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the current advances in functional biodiversity research is the move away from short-lived test systems towards the exploration of diversity-ecosystem functioning relationships in structurally more complex ecosystems. In forests, assumptions about the functional significance of tree species diversity have only recently produced a new generation of research on ecosystem processes and services. Novel experimental designs have now replaced traditional forestry trials, but these comparatively young experimental plots suffer from specific difficulties that are mainly related to the tree size and longevity. Tree species diversity experiments therefore need to be complemented with comparative observational studies in existing forests. Here we present the design and implementation of a new network of forest plots along tree species diversity gradients in six major European forest types: the FunDivEUROPE Exploratory Platform. Based on a review of the deficiencies of existing observational approaches and of unresolved research questions and hypotheses, we discuss the fundamental criteria that shaped the design of our platform. Key features include the extent of the species diversity gradient with mixtures up to five species, strict avoidance of a dilution gradient, special attention to community evenness and minimal covariation with other environmental factors. The new European research platform permits the most comprehensive assessment of tree species diversity effects on forest ecosystem functioning to date since it offers a common set of research plots to groups of researchers from very different disciplines and uses the same methodological approach in contrasting forest types along an extensive environmental gradient. (C) 2013 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Predicting the response of species to environmental changes is a great and on-going challenge for ecologists, and this requires a more in-depth understanding of the importance of biotic interactions and the population structuration in the landscape. Using a reciprocal transplantation experiment, we tested the response of five species to an elevational gradient. This was combined to a neighbour removal treatment to test the importance of local adaptation and biotic interactions. The trait studied was performance measured as survival and biomass. Species response varied along the elevational gradient, but with no consistent pattern. Performance of species was influenced by environmental conditions occurring locally at each site, as well as by positive or negative effects of the surrounding vegetation. Indeed, we observed a shift from competition for biomass to facilitation for survival as a response to the increase in environmental stress occurring in the different sites. Unlike previous studies pointing out an increase of stress along the elevation gradient, our results supported a stress gradient related to water availability, which was not strictly parallel to the elevational gradient. For three of our species, we observed a greater biomass production for the population coming from the site where the species was dominant (central population) compared to population sampled at the limit of the distribution (marginal population). Nevertheless, we did not observe any pattern of local adaptation that could indicate adaptation of populations to a particular habitat. Altogether, our results highlighted the great ability of plant species to cope with environmental changes, with no local adaptation and great variability in response to local conditions. Our study confirms the importance of taking into account biotic interactions and population structure occurring at local scale in the prediction of communities’ responses to global environmental changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-sorted circles, non-sorted polygons, and earth hummocks are common ground-surface features ill arctic regions. The), are caused by a variety of physical processes that Occur in permafrost regions including contraction cracking and frost heave. Here we describe the vegetation of patterned-ground forms on zonal sites at three location!: along an N-S transect through the High Arctic of Canada. We made 75 releves on patterned-ground features (circles, polygons, earth hummocks) and adjacent tundra (Interpolygon, intercircle, interhummock areas) and identified and classified the vegetation according to the Braun-Blanquet Method. Environmental factors were correlated with the vegetation data using a nonmetric multidimensional scaling ordination (NMDS). We identified eleven commnunities: (1) Puccinellia angustata-Papaver radicalum community in xeromesic non-sorted polygons of subzone A of the Circumpolar Arctic Vegetation Map; (2) Saxifraga-Parmelia omphalodes ssp. glacialis community in hydromesic interpolygon areas of subzone A; (3) Hypogymnia subobscura-Lecanora epibryon community In xeromesic non-sorted polygons of subzone B; (4) Orthotrichum speciosum-Salix arctica community In xeromesic interpolygon areas of subzone B; (5) Cochlearia groenlandica-Luzula nivalis community in hydromesic earth Mocks Of subzone B; (6) Salix arctica-Eriophorum angustifolium ssp. triste community in hygric earth hummocks of subzone 13; (7) Puccinellia angustata-Potentilla vahliana community in xeromesic non-sorted circles and bare patches of subzone Q (8) Dryas integrifolia-Carex rupestris community in xeromesic intercircle areas and vegetated patches of subzone C; (9) Braya glabella ssp. purpurascens-Dryas integrifolia community In hydromesic non-sorted circles of subzone Q (10) Dryas integrifolia-Carex aquatilis community in hydromesic intercircle areas of subzone C; and (11) Eriophorum angustifolium ssp. triste-Carex aquatilis community ill hygric intercircle areas of subzone C. The NMDS ordination displayed the vegetation types with respect to complex environmental gradients. The first axis of the ordination corresponds to a complex soil moisture gradient and the second axis corresponds to a complex geology/elevation/climate gradient. The tundra plots have a greater moss and graminoid cover than the adjacent frost-heave communities. In general, frost-heave features have greater thaw depths, more bare ground, thinner organic horizons, and lower soil moisture than the surrounding tundra. The morphology of the investigated patterned ground forms changes along the climatic gradient, with non-sorted pollygons dominating in the northernmost sites and non-sorted circles dominating, in the southern sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate affects the timing, rate and dynamics of tree growth, over time scales ranging from seconds to centuries. Monitoring how a tree's stem radius varies over these time scales can provide insight into intra-annual stem dynamics and improve our understanding of climate impacts on tree physiology and growth processes. Here, we quantify the response of radial conifer stem size to environmental fluctuations via a novel assessment of tree circadian cycles. We analyze four years of sub-hourly data collected from 56 larch and spruce trees growing along a natural temperature gradient of ∼6 °C in the central Swiss Alps. During the growing season, tree stem diameters were greatest at mid-morning and smallest in the late evening, reflecting the daily cycle of water uptake and loss. Along the gradient, amplitudes calculated from the stem radius cycle were ∼50% smaller at the upper site (∼2200 m a.s.l.) relative to the lower site (∼800 m a.s.l.). We show changes in precipitation, temperature and cloud cover have a substantial effect on typical growing season diurnal cycles; amplitudes were nine times smaller on rainy days (>10 mm), and daily amplitudes are approximately 40% larger when the mean daily temperature is 15–20 °C than when it is 5–10 °C. We find that over the growing season in the sub-alpine forests, spruce show greater daily stem water movement than larch. However, under projected future warming, larch could experience up to 50% greater stem water use, which may severely affect future growth on already dry sites. Our data further indicate that because of the confounding influences of radial growth and short-term water dynamics on stem size, conventional methodology probably overstates the effect of water-linked meteorological variables (i.e. precipitation and relative humidity) on intra-annual tree growth. We suggest future studies use intra-seasonal measurements of cell development and consider whether climatic factors produce reversible changes in stem diameter. These study design elements may help researchers more accurately quantify and attribute changes in forest productivity in response to future warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous syntheses on the effects of environmental conditions on the outcome of plant-plant interactions summarize results from pairwise studies. However, the upscaling to the community-level of such studies is problematic because of the existence of multiple species assemblages and species-specific responses to both the environmental conditions and the presence of neighbors. We conducted the first global synthesis of community-level studies from harsh environments, which included data from 71 alpine and 137 dryland communities to: (i) test how important are facilitative interactions as a driver of community structure, (ii) evaluate whether we can predict the frequency of positive plant-plant interactions across differing environmental conditions and habitats, and (iii) assess whether thresholds in the response of plant-plant interactions to environmental gradients exists between ``moderate'' and ``extreme'' environments. We also used those community-level studies performed across gradients of at least three points to evaluate how the average environmental conditions, the length of the gradient studied, and the number of points sampled across such gradient affect the form and strength of the facilitation-environmental conditions relationship. Over 25% of the species present were more spatially associated to nurse plants than expected by chance in both alpine and chyland areas, illustrating the high importance of positive plant-plant interactions for the maintenance of plant diversity in these environments. Facilitative interactions were more frequent, and more related to environmental conditions, in alpine than in dryland areas, perhaps because drylands are generally characterized by a larger variety of environmental stress factors and plant functional traits. The frequency of facilitative interactions in alpine communities peaked at 1000 mm of annual rainfall, and globally decreased with elevation. The frequency of positive interactions in dtyland communities decreased globally with water scarcity or temperature annual range. Positive facilitation-drought stress relationships are more likely in shorter regional gradients, but these relationships are obscured in regions with a greater species turnover or with complex environmental gradients. By showing the different climatic drivers and behaviors of plant-plant interactions in dryland and alpine areas, our results will improve predictions regarding the effect of facilitation on the assembly of plant communities and their response to changes in environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface sediments from 68 small lakes in the Alps and 9 well-dated sediment core samples that cover a gradient of total phosphorus (TP) concentrations of 6 to 520 μg TP l-1 were studied for diatom, chrysophyte cyst, cladocera, and chironomid assemblages. Inference models for mean circulation log10 TP were developed for diatoms, chironomids, and benthic cladocera using weighted-averaging partial least squares. After screening for outliers, the final transfer functions have coefficients of determination (r2, as assessed by cross-validation, of 0.79 (diatoms), 0.68 (chironomids), and 0.49 (benthic cladocera). Planktonic cladocera and chrysophytes show very weak relationships to TP and no TP inference models were developed for these biota. Diatoms showed the best relationship with TP, whereas the other biota all have large secondary gradients, suggesting that variables other than TP have a strong influence on their composition and abundance. Comparison with other diatom – TP inference models shows that our model has high predictive power and a low root mean squared error of prediction, as assessed by cross-validation.