25 resultados para Entry into adult life
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Neonatal screening and treatment of phenylketonuria (PKU) prevent the development of neurocognitive impairment. The degree of dysfunction may be related to metabolic control and responsible for a hampered school career. METHODS This was a retrospective study from a single metabolic unit of a Swiss University Hospital. The time point of diagnosis and all Phenylalanin (Phe) concentrations during the follow-up were recorded. The primary outcome was integration into professional life defined as no professional studies versus accomplished apprenticeship versus high school diploma/university. Phe levels were correlated with professional outcome. The control group consisted of the patients' healthy parents and siblings. RESULTS A total of 27 patients (13 females, 14 males) were included in the study. The mean (SD) follow-up period was 25.1 (7.6) years. The control group consisted of 57 subjects. Overall, 23 patients were diagnosed by neonatal screening, and 4 patients were diagnosed later. All 4 were in the non-professional study group. Compared with the controls there were significantly more patients in the non-professional study group (26% vs 9%, p <0.05) and significantly less in the accomplished apprenticeship group (59% vs 82%; p <0.04). After exclusion of the patients with late diagnosis no significant differences were found with regard to the professional integration between patients and controls. Significant differences in Phe-levels between the three groups could be documented between 2-10 years of age with the highest levels in the non-professional study followed by the accomplished apprenticeship and the high school diploma group (p <0.01). CONCLUSION Patients who are diagnosed by neonatal screening and are consequently cared for are able to accomplish an apprenticeship or a high school diploma.
Resumo:
The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.
Resumo:
Before entering the central nervous system (CNS) immune cells have to penetrate any one of its barriers, namely either the endothelial blood-brain barrier, the epithelial blood-cerebrospinal fluid barrier or the tanycytic barrier around the circumventricular organs, all of which maintain homeostasis within the CNS. The presence of these barriers in combination with the lack of lymphatic vessels and the absence of classical MHC-positive antigen presenting cells characterizes the CNS as an immunologically privileged site. In multiple sclerosis a large number of inflammatory cells gains access to the CNS parenchyma. Studies performed in experimental autoimmune encephalomyelitis (EAE), a rodent model for multiple sclerosis, have enabled us to understand some of the molecular mechanisms involved in immune cell entry into the CNS. In particular, the realization that /alpha4-integrins play a predominant role in leukocyte trafficking to the CNS has led to the development of a novel drug for the treatment of relapsing-remitting multiple sclerosis, which targets /alpha4-integrin mediated immune cell migration to the CNS. At the same time, the involvement of other adhesion and signalling molecules in this process remains to be investigated and novel molecules contributing to immune cell entry into the CNS are still being identified. The entire process of immune cell trafficking into the CNS is strictly controlled by the brain barriers not only under physiological conditions but also during neuroinflammation, when some barrier properties are lost. Thus, immune cell entry into the CNS critically depends on the unique characteristics of the brain barriers maintaining CNS homeostasis.
Resumo:
In multiple sclerosis and in its animal model experimental autoimmune encephalomyelitis (EAE), inflammatory cells migrate across the highly specialized endothelial blood-brain barrier (BBB) and gain access to the central nervous system (CNS). It is well established that leukocyte recruitment across this vascular bed is unique due to the predominant involvement of alpha4-integrins in mediating the initial contact to as well as firm adhesion with the endothelium. In contrast, the involvement of the selectins, L-selectin, E- and P-selectin and their respective carbohydrate ligands such as P-selectin glycoprotein (PSGL)-1 in this process has been controversially discussed. Intravital microscopic analysis of immune cell interaction with superficial brain vessels demonstrates a role for E- and P-selectin and their common ligand PSGL-1 in lymphocyte rolling. However, E- and P-selectin-deficient SJL- or C57Bl/6 mice or PSGL-1-deficient C57Bl/6 mice develop EAE indistinguishable from wild-type mice. Considering these apparently discrepant observations, it needs to be discussed whether the molecular mechanisms involved in leukocyte trafficking across superficial brain vessels are irrelevant for EAE pathogenesis or whether the therapeutic efficacy of targeting alpha4-integrins in EAE is truly dependent on the inhibition of leukocyte trafficking across the BBB.
Resumo:
We report the first observation of protons in the near-lunar (100-200 km from the surface) and deeper (near anti-subsolar point) plasma wake when the interplanetary magnetic field (IMF) and solar wind velocity (vsw) are parallel (aligned flow; angle between IMF and vsw≤10°). More than 98% of the observations during aligned flow condition showed the presence of protons in the wake. These observations are obtained by the Solar Wind Monitor sensor of the Sub-keV Atom Reflecting Analyser experiment on Chandrayaan-1. The observation cannot be explained by the conventional fluid models for aligned flow. Back tracing of the observed protons suggests that their source is the solar wind. The larger gyroradii of the wake protons compared to that of solar wind suggest that they were part of the tail of the solar wind velocity distribution function. Such protons could enter the wake due to their large gyroradii even when the flow is aligned to IMF. However, the wake boundary electric field may also play a role in the entry of the protons into the wake.
Resumo:
The United Nations Educational Scientific and Cultural Organization (UNESCO) adopted in 2005 the first legally binding international instrument on culture. The Convention on the Protection and Promotion of the Diversity of Cultural Expressions was agreed upon with an overwhelming majority and after the swiftest ratification process in the history of the UNESCO entered into force on 18 March 2007. Now, five years later and with some 125 Members committed to implementing the Convention, not only observers with a particular interest in the topic but also the broader public may be eager to know what has happened and in how far has the implementation progress advanced. This is the question that animates this paper and which it seeks to answer by giving a brief background to the UNESCO Convention, clarifying its legal and political status and impact, as well as by looking at the current implementation activities in the domestic and international contexts.
Resumo:
The United Nations Educational Scientific and Cultural Organization (UNESCO) adopted in 2005 the first legally binding international instrument on culture. The Convention on the Protection and Promotion of the Diversity of Cultural Expressions was agreed upon with an overwhelming majority and after the swiftest ratification process in the history of the UNESCO entered into force on 18 March 2007. Now, five years later and with some 125 Members committed to implementing the Convention, not only observers with a particular interest in the topic but also the broader public may be eager to know what has happened and in how far has the implementation progress advanced. This is the question that animates this paper and which it seeks to answer by giving a brief background to the UNESCO Convention, clarifying its legal and political status and impact, as well as by looking at the current implementation activities in the domestic and international contexts.
Resumo:
Hypertension is the leading risk factor for cardiovascular disease. Although accumulating evidence suggests tracking of blood pressure from childhood into adult life, there is little information regarding the relative contributions of genetic, prenatal, biological, behavioral, environmental, and social determinants to childhood blood pressure.
Resumo:
Motivation plays a key role in successful entry into working life. Based on a cross-sectional and a one-year longitudinal study, we used a person-centered approach to explore work-related motivation (i.e., autonomous goals, positive affect, and occupational self-efficacy) among 577 students in 8th grade (Study 1) and 949 adolescents in vocational training (Study 2). Based on latent profile analysis, in both studies we identified four groups that were characterized by different levels of overall motivation and one group characterized by low positive affect and mean levels in autonomous goals and self-efficacy. Profiles characterized by high levels of motivation showed the highest levels of positive work expectations and goal engagement and the lowest levels of negative work expectations in Study 1 and the highest levels of person-job fit, work engagement, and job satisfaction in Study 2. Moreover, latent difference score analysis showed that motivational profiles predicted changes in person-job fit and work engagement across one year but not in job satisfaction. The results imply that career counselors should be aware of characteristic motivational patterns of clients that may require specific counseling approaches.
Resumo:
The host cell cytoskeleton plays a key role in the life cycle of viral pathogens whose propagation depends on mandatory intracellular steps. Accordingly, also the human immunodeficiency virus type 1 (HIV-1) has evolved strategies to exploit and modulate in particular the actin cytoskeleton for its purposes. This review will recapitulate recent findings on how HIV-1 hijacks the cytoskeleton to facilitate entry into, transport within and egress from host cells as well as to commandeer communication of infected with uninfected bystander cells.
Resumo:
Interleukin 17-producing T helper cells (T(H)-17 cells) are important in experimental autoimmune encephalomyelitis, but their route of entry into the central nervous system (CNS) and their contribution relative to that of other effector T cells remain to be determined. Here we found that mice lacking CCR6, a chemokine receptor characteristic of T(H)-17 cells, developed T(H)-17 responses but were highly resistant to the induction of experimental autoimmune encephalomyelitis. Disease susceptibility was reconstituted by transfer of wild-type T cells that entered into the CNS before disease onset and triggered massive CCR6-independent recruitment of effector T cells across activated parenchymal vessels. The CCR6 ligand CCL20 was constitutively expressed in epithelial cells of choroid plexus in mice and humans. Our results identify distinct molecular requirements and ports of lymphocyte entry into uninflamed versus inflamed CNS and suggest that the CCR6-CCL20 axis in the choroid plexus controls immune surveillance of the CNS.