5 resultados para Enterobacter A47
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Despite many years of clinical experience with cefepime, data regarding the outcome of patients suffering from bloodstream infections (BSIs) due to Enterobacter cloacae (Ecl) are scarce. To address the gap in our knowledge, 57 Ecl responsible for 51 BSIs were analysed implementing phenotypic and molecular methods (microarrays, PCRs for bla and other genes, rep-PCR to analyse clonality). Only two E. cloacae (3.5%) were ESBL-producers, whereas 34 (59.6%) and 18 (31.6%) possessed inducible (Ind-Ecl) or derepressed (Der-Ecl) AmpC enzymes, respectively. All isolates were susceptible to imipenem, meropenem, gentamicin and ciprofloxacin. Der-Ecl were highly resistant to ceftazidime and piperacillin/tazobactam (both MIC₉₀≥256 μg/mL), whereas cefepime retained its activity (MIC₉₀ of 3 μg/mL). rep-PCR indicated that the isolates were sporadic, but Ecl collected from the same patients were indistinguishable. In particular, three BSIs initially due to Ind-Ecl evolved (under ceftriaxone or piperacillin/tazobactam treatment) into Der-Ecl because of mutations or a deletion in ampD or insertion of IS4321 in the promoter. These last two mechanisms have never been described in Ecl. Mortality was higher for BSIs due to Der-Ecl than Ind-Ecl (3.8% vs. 29.4%; P=0.028) and was associated with the Charlson co-morbidity index (P=0.046). Using the following directed treatments, patients with BSI showed a favourable treatment outcome: cefepime (16/18; 88.9%); carbapenems (12/13; 92.3%); ceftriaxone (4/7; 57.1%); piperacillin/tazobactam (5/7; 71.4%); and ciprofloxacin (6/6; 100%). Cefepime represents a safe therapeutic option and an alternative to carbapenems to treat BSIs due to Ecl when the prevalence of ESBL-producers is low.
Resumo:
The in vitro study was aimed to determine the effect of ozone on periodontopathogenic microorganisms. Ozone was generated for 6 s-2 × 24 s (corresponding to 0.56 mg-2 × 2.24 mg of ozone) against 23 mainly anaerobic periodontopathogenic species. Agar diffusion test was used as a screening method. Then, the killing activity was tested in a serum-free environment and with 25% v/v inactivated serum. Further, the effect of ozone on bactericidal activity of native serum was analyzed against Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. Agar diffusion test showed a high efficacy of ozone against microorganisms, especially against Porphyromonas gingivalis. This result was confirmed by the killing tests; most of the strains in a concentration of 10(5) were completely eliminated after twofold 18-s application of ozone. Only four of the six potentially "superinfecting" species (Staphylococcus aureus, Enterococcus faecalis, Enterobacter cloacae, Candida albicans) survived in part. Addition of heat-inactivated serum reduced the killing rate of ozone by 78% after 6-s and by 47% after twofold 18-s exposures; no strain was completely eradicated after any application of ozone. The bactericidal effect of native serum was enhanced after application of ozone; no effect was visible on the included A. actinomycetemcomitans strain which was found to be completely resistant to the bactericidal action of serum. In conclusion, (a) ozone has a strong antibacterial activity against putative periodontopathogenic microorganisms, and (b) the bactericidal effect is reduced in the presence of serum. Ozone may have potential as an adjunctive application to mechanical treatment in periodontitis patients.
Resumo:
Multilocus sequence analysis (MLSA) based on recN, rpoA and thdF genes was done on more than 30 species of the family Enterobacteriaceae with a focus on Cronobacter and the related genus Enterobacter. The sequences provide valuable data for phylogenetic, taxonomic and diagnostic purposes. Phylogenetic analysis showed that the genus Cronobacter forms a homogenous cluster related to recently described species of Enterobacter, but distant to other species of this genus. Combining sequence information on all three genes is highly representative for the species' %GC-content used as taxonomic marker. Sequence similarity of the three genes and even of recN alone can be used to extrapolate genetic similarities between species of Enterobacteriaceae. Finally, the rpoA gene sequence, which is the easiest one to determine, provides a powerful diagnostic tool to identify and differentiate species of this family. The comparative analysis gives important insights into the phylogeny and genetic relatedness of the family Enterobacteriaceae and will serve as a basis for further studies and clarifications on the taxonomy of this large and heterogeneous family.
Resumo:
Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.