18 resultados para Engineering, Computer|Engineering, Electronics and Electrical|Computer Science

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have shown that the nociceptive withdrawal reflex threshold (NWR-T) and the electrical pain threshold (EP-T) are reliable measures in pain-free populations. However, it is necessary to investigate the reliability of these measures in patients with chronic pain in order to translate these techniques from laboratory to clinic. The aims of this study were to determine the test-retest reliability of the NWR-T and EP-T after single and repeated (temporal summation) electrical stimulation in a group of patients with chronic low back pain, and to investigate the association between the NWR-T and the EP-T. To this end, 25 patients with chronic pain participated in three identical sessions, separated by 1 week in average, in which the NWR-T and the EP-T to single and repeated stimulation were measured. Test-retest reliability was assessed using intra-class correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman analysis. The association between the thresholds was assessed using the coefficient of determination (r (2)). The results showed good-to-excellent reliability for both NWR-T and EP-T in all cases, with average ICC values ranging 0.76-0.90 and average CV values ranging 12.0-17.7%. The association between thresholds was better after repeated stimulation than after single stimulation, with average r (2) values of 0.83 and 0.56, respectively. In conclusion, the NWR-T and the EP-T are reliable assessment tools for assessing the sensitivity of spinal nociceptive pathways in patients with chronic pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND A majority of patients undergoing ablation of ventricular tachycardia have implanted devices precluding substrate imaging with delayed-enhancement MRI. Contrast-enhanced multidetector computed tomography (MDCT) can depict myocardial wall thickness with submillimetric resolution. We evaluated the relationship between regional myocardial wall thinning (WT) imaged by MDCT and arrhythmogenic substrate in postinfarction ventricular tachycardia. METHODS AND RESULTS We studied 13 consecutive postinfarction patients undergoing MDCT before ablation. MDCT data were integrated with high-density 3-dimensional electroanatomic maps acquired during sinus rhythm (endocardium, 509±291 points/map; epicardium, 716±323 points/map). Low-voltage areas (<1.5 mV) and local abnormal ventricular activities (LAVA) during sinus rhythm were assessed with regard to the WT. A significant correlation was found between the areas of WT <5 mm and endocardial low voltage (correlation-R=0.82; P=0.001), but no such correlation was found in the epicardium. The WT <5 mm area was smaller than the endocardial low-voltage area (54 cm(2) [Q1-Q3, 46-92] versus 71 cm(2) [Q1-Q3, 59-124]; P=0.001). Among a total of 13 060 electrograms reviewed in the whole study population, 538 LAVA were detected and analyzed. LAVA were located within the WT <5 mm (469/538 [87%]) or at its border (100% within 23 mm). Very late LAVA (>100 ms after QRS complex) were almost exclusively detected within the thinnest area (93% in the WT<3 mm). CONCLUSIONS Regional myocardial WT correlates to low-voltage regions and distribution of LAVA critical for the generation and maintenance of postinfarction ventricular tachycardia. The integration of MDCT WT with 3-dimensional electroanatomic maps can help focus mapping and ablation on the culprit regions, even when MRI is precluded by the presence of implanted devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Course materials for e-learning are a special type of information system (IS). Thus, in the development of educational material one may learn from principles, methods, and tools that originated in the Software Engineering (SE) discipline and that are relevant in similar ways in "Instructional Engineering". An important SE principle is mo dularization, which supports properties like reusability and adaptability of code. To foster the adaptability of courseware we present a concept in which learning material is organized as a library of modular course objects. A certain lecturer may customize the courseware according to his specific course requirements. He must consider logical dependencies of and relationship integrity between selected course objects. We discuss integrity issues that have to be regarded for the composition of consistent course materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of the knowledge about software systems is implicit, and therefore difficult to recover by purely automated techniques. Architectural layers and the externally visible features of software systems are two examples of information that can be difficult to detect from source code alone, and that would benefit from additional human knowledge. Typical approaches to reasoning about data involve encoding an explicit meta-model and expressing analyses at that level. Due to its informal nature, however, human knowledge can be difficult to characterize up-front and integrate into such a meta-model. We propose a generic, annotation-based approach to capture such knowledge during the reverse engineering process. Annotation types can be iteratively defined, refined and transformed, without requiring a fixed meta-model to be defined in advance. We show how our approach supports reverse engineering by implementing it in a tool called Metanool and by applying it to (i) analyzing architectural layering, (ii) tracking reengineering tasks, (iii) detecting design flaws, and (iv) analyzing features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this roadmap paper is to summarize the state-of-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for self-adaptive solutions, software engineering processes for self-adaptive systems, from centralized to decentralized control, and practical run-time verification & validation for self-adaptive systems. For each topic, we present an overview, suggest future directions, and focus on selected challenges. This paper complements and extends a previous roadmap on software engineering for self-adaptive systems published in 2009 covering a different set of topics, and reflecting in part on the previous paper. This roadmap is one of the many results of the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Systems, which took place in October 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human face is a vital component of our identity and many people undergo medical aesthetics procedures in order to achieve an ideal or desired look. However, communication between physician and patient is fundamental to understand the patient’s wishes and to achieve the desired results. To date, most plastic surgeons rely on either “free hand” 2D drawings on picture printouts or computerized picture morphing. Alternatively, hardware dependent solutions allow facial shapes to be created and planned in 3D, but they are usually expensive or complex to handle. To offer a simple and hardware independent solution, we propose a web-based application that uses 3 standard 2D pictures to create a 3D representation of the patient’s face on which facial aesthetic procedures such as filling, skin clearing or rejuvenation, and rhinoplasty are planned in 3D. The proposed application couples a set of well-established methods together in a novel manner to optimize 3D reconstructions for clinical use. Face reconstructions performed with the application were evaluated by two plastic surgeons and also compared to ground truth data. Results showed the application can provide accurate 3D face representations to be used in clinics (within an average of 2 mm error) in less than 5 min.