16 resultados para Engelmann spruce.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite numerous studies about nitrogen-cycling in forest ecosystems, many uncertainties remain, especially regarding the longer-term nitrogen accumulation. To contribute to filling this gap, the dynamic process-based model TRACE, with the ability to simulate 15N tracer redistribution in forest ecosystems was used to study N cycling processes in a mountain spruce forest of the northern edge of the Alps in Switzerland (Alptal, SZ). Most modeling analyses of N-cycling and C-N interactions have very limited ability to determine whether the process interactions are captured correctly. Because the interactions in such a system are complex, it is possible to get the whole-system C and N cycling right in a model without really knowing if the way the model combines fine-scale interactions to derive whole-system cycling is correct. With the possibility to simulate 15N tracer redistribution in ecosystem compartments, TRACE features a very powerful tool for the validation of fine-scale processes captured by the model. We first adapted the model to the new site (Alptal, Switzerland; long-term low-dose N-amendment experiment) by including a new algorithm for preferential water flow and by parameterizing of differences in drivers such as climate, N deposition and initial site conditions. After the calibration of key rates such as NPP and SOM turnover, we simulated patterns of 15N redistribution to compare against 15N field observations from a large-scale labeling experiment. The comparison of 15N field data with the modeled redistribution of the tracer in the soil horizons and vegetation compartments shows that the majority of fine-scale processes are captured satisfactorily. Particularly, the model is able to reproduce the fact that the largest part of the N deposition is immobilized in the soil. The discrepancies of 15N recovery in the LF and M soil horizon can be explained by the application method of the tracer and by the retention of the applied tracer by the well developed moss layer, which is not considered in the model. Discrepancies in the dynamics of foliage and litterfall 15N recovery were also observed and are related to the longevity of the needles in our mountain forest. As a next step, we will use the final Alptal version of the model to calculate the effects of climate change (temperature, CO2) and N deposition on ecosystem C sequestration in this regionally representative Norway spruce (Picea abies) stand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyses of pollen, macrofossils and microscopic charcoal in the sediment of a small sub-alpine lake (Karakol, Kyrgyzstan) provide new data to reconstruct the vegetation history of the Kungey Alatau spruce forest during the late-Holocene, i.e. the past 4,000 years. The pollen data suggest that Picea schrenkiana F. and M. was the dominant tree in this region from the beginning of the record. The pollen record of pronounced die-backs of the forests, along with lithostratigraphical evidence, points to possible climatic cooling (and/or drying) around 3,800 cal year B.P., and between 3,350 and 2,520 cal year B.P., with a culmination at 2,800-2,600 cal B.P., although stable climatic conditions are reported for this region for the past 3,000-4,000 years in previous studies. From 2,500 to 190 cal year B.P. high pollen values of P. schrenkiana suggest rather closed and dense forests under the environmental conditions of that time. A marked decline in spruce forests occurred with the onset of modern human activities in the region from 190 cal year B.P. These results show that the present forests are anthropogenically reduced and represent only about half of their potential natural extent. As P. schrenkiana is a species endemic to the western Tien Shan, it is most likely that its refugium was confined to this region. However, our palaeoecological record is too recent to address this hypothesis thoroughly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim We used combined palaeobotanical and genetic data to assess whether Norway spruce (Picea abies) and Siberian spruce (Picea obovata), two major components of the Eurasian boreal forests, occupied separate glacial refugia, and to test previous hypotheses on their distinction, geographical delimitation and introgression. Location The range of Norway spruce in northern Europe and Siberian spruce in northern Asia. Methods Pollen data and recently compiled macrofossil records were summarized for the Last Glacial Maximum (LGM), late glacial and Holocene. Genetic variation was assessed in 50 populations using one maternally (mitochondrial nad1) and one paternally (chloroplast trnT–trnL) inherited marker and analysed using spatial analyses of molecular variance (SAMOVA). Results Macrofossils showed that spruce was present in both northern Europe and Siberia at the LGM. Congruent macrofossil and pollen data from the late glacial suggested widespread expansions of spruce in the East European Plain, West Siberian Plain, southern Siberian mountains and the Baikal region. Colonization was largely completed during the early Holocene, except in the formerly glaciated area of northern Europe. Both DNA markers distinguished two highly differentiated groups that correspond to Norway spruce and Siberian spruce and coincide spatially with separate LGM spruce occurrences. The division of the mtDNA variation was geographically well defined and occurred to the east of the Ural Mountains along the Ob River, whereas the cpDNA variation showed widespread admixture. Genetic diversity of both DNA markers was higher in western than in eastern populations. Main conclusions North Eurasian Norway spruce and Siberian spruce are genetically distinct and occupied separate LGM refugia, Norway spruce on the East European Plain and Siberian spruce in southern Siberia, where they were already widespread during the late glacial. They came into contact in the basin of the Ob River and probably hybridized. The lower genetic diversity in the eastern populations may indicate that Siberian spruce suffered more from past climatic fluctuations than Norway spruce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our knowledge about the effect of single-tree influence areas on the physicochemical properties of the underlying mineral soil in forest ecosystems is still limited. This restricts our ability to adequately estimate future changes in soil functioning due to forest management practices. We studied the stand scale spatial variation of different soil organic matter species investigated by 13C NMR spectroscopy, lignin phenol and neutral sugar analysis under an unmanaged mountainous high-elevation Norway spruce (Picea abies L.) forest in central Europe. Multivariate geostatistical approaches were applied to relate the spatial patterns of the different soil organic matter species to topographic parameters, bulk density, oxalate- and dithionite-extractable iron, pH, and the impact of tree distribution. Soil samples were taken from the mineral top soil. Generally, the stand scale distribution patterns of different soil organic matter compounds could be divided into two groups: Those compounds, which were significantly spatially correlated with topography/altitude and those with small scale spatial pattern (range ≤ 10 m) that was closely related to tree distribution. The concentration of plant-derived soil organic matter components, such as lignin, at a given sampling point was significantly spatially related to the distance of the nearest tree (p ≤ 0.05). In contrast, the spatial distribution of mainly microbial-derived compounds (e.g. galactose and mannose) could be attributed to the dominating impact of small-scale topography and the contribution of poorly crystalline iron oxides that were significantly larger in the central depression of the study site compared to crest and slope positions. Our results demonstrate that topographic parameters dominate the distribution of overall topsoil organic carbon (OC) stocks at temperate high-elevation forest ecosystems, particularly in sloped terrain. However, trees superimpose topography-controlled OC biogeochemistry beneath their crown by releasing litter and changing soil conditions in comparison to open areas. This may lead to distinct zones with different mechanisms of soil organic matter degradation and also stabilization in forest stands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The induction of activity of the enzyme nitrate reductase (NR, EC 1.6.6.1, 1.6.6.2) in needles of Norway spruce (Picea abies[L.] Karst.) by nitrogen dioxide (NO2) was studied under laboratory and field conditions. In fumigation chambers an increase in nitrate reductase activity (NRA) was detected 4 h after the start of the NO2 treatment. During the first 2 days with 100 µg NO2 m−3, NRA reached a constant level and did not change during the following 4 days. At the same level of NO2, NRA was lower in needles from trees grown on NPK-fertilized soil than on non-fertilized soil. After the transfer of spruce trees from fertilized soil to NPK-rich nutrient solution, NRA was transiently increased. This effect was assigned to root injuries causing nitrate transport to the shoot and subsequent induction of NRA. Neither trees on fertilized soil nor trees transferred to NPK-poor nutrient solution had increased NRA unless NO2 was provided. The NO2 gradient in the vicinity of a highway was used to test the long-term effect of elevated levels of NO2 on needle NRA of potted and field-grown spruce trees. Compared with less polluted sites, permanently increased NRAs were detected when NO2 concentrations were above 20 µg m−3. Controls of field measurements some 10 years after the introduction of catalytic converters in cars showed no significant change neither in NO2 levels nor in the decreasing NRA of spruce needles with the distance from the highway.