2 resultados para Energy Substrates

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucose (Gluc) is the main energy source for the brain. After severe head-injury energy demand is massively increased and supply is often decreased. In pilot microdialysis studies, many patients with severe head-injury had undetectable glucose concentrations, probably reflecting changes in metabolism and/or reduced supply. We therefore investigated whether patients with low ECF glucose (criterion: < 50 microM for > or = 5 hrs), LOWgluc, differ from patients with higher glucose levels (NORMALgluc) We also tested the interrelationships between other parameters such as lactate, glutamate, K+, brain O2 and CO2, ICP, CPP, and CBF in these two groups. We found that patients with low ECF glucose, LOWgluc, have significantly lower lactate concentrations than patients with "normal" glucose, NORMALgluc, levels do. Spearman correlations between glucose and most other parameters were similar in both patient groups. However, glutamate correlated positively with glucose, lactate, brain CO2 and negatively with brain O2 in the NORMALgluc patient group, whereas glutamate did not significantly correlate with any of these parameters in the LOWgluc group. There was also no correlation between outcome and the dialysate glucose. The results indicate that low ECF glucose is almost always present in severe head-injury. Moreover, the lack of correlation between low glucose and outcome, however, suggests that other energy substrates, such as lactate, are important after TBI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to improve the osseointegration of endosseous implants made from titanium, the structure and composition of the surface were modified. Mirror-polished commercially pure (cp) titanium substrates were coated by the sol-gel process with different oxides: TiO(2), SiO(2), Nb(2)O(5) and SiO(2)-TiO(2). The coatings were physically and biologically characterized. Infrared spectroscopy confirmed the absence of organic residues. Ellipsometry determined the thickness of layers to be approximately 100nm. High resolution scanning electron microscopy (SEM) and atomice force microscopy revealed a nanoporous structure in the TiO(2) and Nb(2)O(5) layers, whereas the SiO(2) and SiO(2)-TiO(2) layers appeared almost smooth. The R(a) values, as determined by white-light interferometry, ranged from 20 to 50nm. The surface energy determined by the sessile-drop contact angle method revealed the highest polar component for SiO(2) (30.7mJm(-2)) and the lowest for cp-Ti and 316L stainless steel (6.7mJm(-2)). Cytocompatibility of the oxide layers was investigated with MC3T3-E1 osteoblasts in vitro (proliferation, vitality, morphology and cytochemical/immunolabelling of actin and vinculin). Higher cell proliferation rates were found in SiO(2)-TiO(2) and TiO(2), and lower in Nb(2)O(5) and SiO(2); whereas the vitality rates increased for cp-Ti and Nb(2)O(5). Cytochemical assays showed that all substrates induced a normal cytoskeleton and well-developed focal adhesion contacts. SEM revealed good cell attachment for all coating layers. In conclusion, the sol-gel-derived oxide layers were thin, pure and nanostructured; consequent different osteoblast responses to those coatings are explained by the mutual action and coadjustment of different interrelated surface parameters.