7 resultados para Embryonic Xenopus Brain

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. C6 glioma cells were transfected with two constructs carrying C-terminal laminin alpha1-chain sequences of 117 and 114 bp length, respectively. These sequences are specifically known to code for peptides which have neurite-promoting activity. 2. The stable expression and secretion of the two peptides was detected by Northern and Western blot analysis. 3. Primary neuronal cultures derived from embryonic mouse forebrain were cocultured with these transfected cells and exhibited a substantial increase in neurite outgrowth and in survival time. Conditioned media from the transfected cells generated similar effects. 4. Organotypic cultures from embryonic mouse brain were used as a second system as being closer to the in vivo situation. Again, coculture of brain slices with transfected cells or treatment with laminin peptide-containing media increased neuronal outgrowth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FGFRL1 is a novel member of the fibroblast growth factor receptor (FGFR) family. To investigate its expression during mammalian embryonic development, we have used the mouse system. Expression of Fgfrl1 is very low in mouse embryos of day 6 but steadily increases until birth. As demonstrated by in situ hybridization of 16-day-old embryos, the Fgfrl1 mRNA occurs in cartilaginous structures such as the primordia of bones and the permanent cartilage of the trachea, the ribs and the nose. In addition, some muscle types, including the muscles of the tongue and the diaphragm, express Fgfrl1 at relatively high level. In contrast, the heart and the skeletal muscles of the limbs, as well as many other organs (brain, lung, liver, kidney, gut) express Fgfrl1 only at basal level. It is conceivable that Fgfrl1 interacts with other Fgfrs, which are expressed in cartilage and muscle, to modulate FGF signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroligins (NLs) constitute a family of cell-surface proteins that interact with neurexins (beta-Nxs), another class of neuronal cell-surface proteins, one of each class functioning together in synapse formation. The localization of the various neurexins and neuroligins, however, has not yet been clarified in chicken. Therefore, we studied the expression patterns of neurexin-1 (Nx-1) and neuroligin-1 and -3 during embryonic development of the chick retina and brain by reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ hybridization (ISH). While neurexin-1 increased continuously in both brain and retina, the expression of both neuroligins was more variable. As shown by ISH, Nx-1 is expressed in the inner half retina along with differentiation of ganglion and amacrine cells. Transcripts of NL-1 were detected as early as day 4 and increased with the maturation of the different brain regions. In different brain regions, NL-1 showed a different time regulation. Remarkably, neuroligin-3 was entirely absent in retina. This study indicates that synaptogenetic processes in brain and retina use different molecular machineries, whereby the neuroligins might represent the more distinctly regulated part of the neurexin-neuroligin complexes. Noticeably, NL-3 does not seem to be involved in the making of retinal synapses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases, including schizophrenia, autism, and epilepsy. Here, we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles, neurotransmitter phenotypes, and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β-catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The globin gene family of Xenopus laevis comprises pairs of closely related genes that are arranged in two clusters, each pair of genes being co-ordinately and stage-specifically expressed. To get information on putative regulatory elements, we compared the DNA sequences and the chromatin conformation 5' to the co-ordinately expressed adult alpha-globin genes. Sequence analysis revealed a relatively conserved region from the cap site up to position -289, and further upstream seven distinct boxes of homology, separated by more diverged sequences or deletions/insertions. The homology boxes comprise 22 to 194 base-pairs showing 78 to 95% homology. Analysis of chromatin conformation showed that DNase I preferentially cuts the upstream region of both genes at similar positions, 5' to the T-A-T-A and the C-C-A-A-T boxes, only in chromatin of adult erythroblasts and erythrocytes, where adult globin genes are expressed, but not in chromatin of adult liver cells or larval erythrocytes, where these genes are silent. This suggests that cell- and stage-specific activation of these genes coincides with specific changes in chromatin conformation within the proximal upstream region. No difference was found in the nucleotide sequence within the DNase I hypersensitive region proximal to the adult alpha 1-globin gene in DNA from embryonic cells, in which this gene is inactive, and adult erythrocytes, expressing this gene.