27 resultados para Embryonic Gonad
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Lung cancer is one of the leading causes of cancer-related deaths in the world. Although the origin still remains to be resolved, a prevailing hypothesis implies the involvement of cancer stem cells (CSCs) responsible for tumor initiation, maintenance, and progression. Embryonic stem cell marker, OCT4, encoding the spliced variants OCT4A and OCT4B, has recently been shown to have a dual role; as a potential adult stem cell marker and as a CSC marker in germline and somatic tumors.
Resumo:
In 2000, fishermen reported the appearance of deformed reproductive organs in whitefish (Coregonus spp.) from Lake Thun, Switzerland. Despite intensive investigations, the causes of these abnormalities remain unknown. Using gene expression profiling, we sought to identify candidate genes and physiological processes possibly associated with the observed gonadal deformations, in order to gain insights into potential causes. Using in situ-synthesized oligonucleotide arrays, we compared the expression levels at 21,492 unique transcript probes in liver and head kidney tissue of male whitefish with deformed and normally developed gonads, respectively. The fish had been collected on spawning sites of two genetically distinct whitefish forms of Lake Thun. We contrasted the gene expression profiles of 56 individuals, i.e., 14 individuals of each phenotype and of each population. Gene-by-gene analysis revealed weak expression differences between normal and deformed fish, and only one gene, ictacalcin, was found to be up-regulated in head kidney tissue of deformed fish from both whitefish forms, However, this difference could not be confirmed with quantitative real-time qPCR. Enrichment analysis on the level of physiological processes revealed (i) the involvement of immune response genes in both tissues, particularly those linked to complement activation in the liver, (ii) proteolysis in the liver and (iii) GTPase activity and Ras protein signal transduction in the head kidney. In comparison with current literature, this gene expression pattern signals a chronic autoimmune disease in the testes. Based on the recent observations that gonad deformations are induced through feeding of zooplankton from Lake Thun we hypothesize that a xenobiotic accumulated in whitefish via the plankton triggering autoimmunity as the likely cause of gonad deformations. We propose several experimental strategies to verify or reject this hypothesis.
Resumo:
Studies using cultured cells allow one to dissect complex cellular mechanisms in greater detail than when studying living organisms alone. However, before cultured cells can deliver meaningful results they must accurately represent the in vivo situation. Over the last three to four decades considerable effort has been devoted to the development of culture media which improve in vitro growth and modeling accuracy. In contrast to earlier large-scale, non-specific screening of factors, in recent years the development of such media has relied increasingly on a deeper understanding of the cell's biology and the selection of growth factors to specifically activate known biological processes. These new media now enable equal or better cell isolation and growth, using significantly simpler and less labor-intensive methodologies. Here we describe a simple method to isolate and cultivate epidermal keratinocytes from embryonic or neonatal skin on uncoated plastic using a medium specifically designed to retain epidermal keratinocyte progenitors in an undifferentiated state for improved isolation and proliferation and an alternative medium to support terminal differentiation.
Resumo:
BACKGROUND: Scientific progress in the biology of hematopoietic stem cells (HSCs) provides opportunities for advances in therapy for different diseases. While stem cell sources such as umbilical cord blood (UCB) are unproblematic, other sources such as human embryonic stem cells (hESCs) raise ethical concerns. STUDY DESIGN AND METHODS: In a prospective survey we established the ethical acceptability of collection, research, and therapy with UCB HSCs versus hESCs among health care professionals, pregnant women, patients undergoing in vitro fertilization therapy, parents, and HSC donors and recipients in Switzerland. RESULTS: There was overall agreement about an ethical justification for the collection of UCB for research and therapy in the majority of participants (82%). In contrast, research and therapy with hESCs was acceptable only by a minority (38% of all responders). The collection of hESCs solely created for HSC collection purposes met overall with the lowest approval rates. Hematologists displayed among the participants the highest acceptance rates for the use of hESCs with 55% for collection, 63% for research, and 73% for therapy. CONCLUSIONS: This is the first study assessing the perception of hESCs for research and therapy in comparison with UCB HSCs in different target groups that are exposed directly, indirectly, or not at all to stem cell-based medicine. Our study shows that the debate over the legitimacy of embryo-destructive transplantation medicine is far from over as particularly hESC research continues to present an ethical problem to an overwhelming majority among laypersons and even among health care professionals.
Resumo:
FGFRL1 is a novel member of the fibroblast growth factor receptor (FGFR) family. To investigate its expression during mammalian embryonic development, we have used the mouse system. Expression of Fgfrl1 is very low in mouse embryos of day 6 but steadily increases until birth. As demonstrated by in situ hybridization of 16-day-old embryos, the Fgfrl1 mRNA occurs in cartilaginous structures such as the primordia of bones and the permanent cartilage of the trachea, the ribs and the nose. In addition, some muscle types, including the muscles of the tongue and the diaphragm, express Fgfrl1 at relatively high level. In contrast, the heart and the skeletal muscles of the limbs, as well as many other organs (brain, lung, liver, kidney, gut) express Fgfrl1 only at basal level. It is conceivable that Fgfrl1 interacts with other Fgfrs, which are expressed in cartilage and muscle, to modulate FGF signaling.
Resumo:
Insulin-like growth factor I (IGF-I) plays a key role in the complex system that regulates bony fish growth, differentiation, and reproduction. The major source of circulating IGF-I is liver, but IGF-I-producing cells also occur in other organs, including the gonads. Because no data are available on the potential production sites of IGF-I in gonad development, developmental stages of monosex breedings of male and female tilapia from 0 day postfertilization (DPF) to 90 DPF were investigated for the production sites of IGF-I at the peptide (immunohistochemistry) and mRNA (in situ hybridization) level. IGF-I mRNA first appeared in somatic cells of the male and female gonad anlage at 7 DPF followed by IGF-I peptide around 9-10 DPF. Gonad anlagen were detected from 7 DPF. Starting at 7 DPF, IGF-I peptide but no IGF-I mRNA was observed in male and female primordial germ cells (PGCs) provided that IGF-I mRNA was not under the detection level, this observation may suggest that IGF-I originates from the somatic cells and is transferred to the PGCs or is of maternal origin. While in female germ cells IGF-I mRNA and peptide appeared at 29 DPF, in male germ cells both were detected as late as at 51-53 DPF. It is assumed that the production of IGF-I in the germ cells is linked to the onset of meiosis that in tilapia ovary starts at around 28 DPF and in testes at around 52-53 DPF. In adult testis, IGF-I mRNA and peptide occurred in the majority of spermatogonia and spermatocytes as well as in Leydig cells, the latter indicating a role of IGF-I in the synthesis of male sex steroids. In adult ovary, IGF-I mRNA and IGF-I peptide were always present in small and previtellogenic oocytes but only IGF-I peptide infrequently occurred in oocytes at the later stages. IGF-I expression appeared in numerous granulosa and some theca cells of follicles at the lipid stage and persisted in follicles with mature oocytes. The results suggest a crucial role of local IGF-I in the formation, differentiation and function of tilapia gonads.
Resumo:
TIE2 is a vascular endothelial-specific receptor tyrosine kinase essential for the regulation of vascular network formation and remodeling. Previously, we have shown that the 1.2-kb 5' flanking region of the TIE2 promoter is capable of directing beta-galactosidase reporter gene expression specifically into a subset of endothelial cells (ECs) of transgenic mouse embryos. However, transgene activity was restricted to early embryonic stages and not detectable in adult mice. Herein we describe the identification and characterization of an autonomous endothelial-specific enhancer in the first intron of the mouse TIE2 gene. Furthermore, combination of the TIE2 promoter with an intron fragment containing this enhancer allows it to target reporter gene expression specifically and uniformly to virtually all vascular ECs throughout embryogenesis and adulthood. To our knowledge, this is the first time that an in vivo expression system has been assembled by which heterologous genes can be targeted exclusively to the ECs of the entire vasculature. This should be a valuable tool to address the function of genes during physiological and pathological processes of vascular ECs in vivo. Furthermore, we were able to identify a short region critical for enhancer function in vivo that contains putative binding sites for Ets-like transcription factors. This should, therefore, allow us to determine the molecular mechanisms underlying the vascular-EC-specific expression of the TIE2 gene.
Resumo:
The mouse Foxq1 gene, also known as Hfh1, encodes a winged helix/forkhead transcription factor. In adult mice, Foxq1 is highly expressed in kidney and stomach. Here, we report that Foxq1 is expressed during prenatal and postnatal stomach development and the transcripts are restricted to acid secreting parietal cells. Mice homozygous for a deletion of the Foxq1 locus on a 129/Sv x C57BL/6J hybrid genetic background display variable phenotypes consistent with requirement of the gene during embryogenesis. Approximately 50% of Foxq1-/- embryos die in utero. Surviving homozygous mutants are normal and fertile, and have a silky shiny coat. Although the parietal cell development is not affected in the absence of Foxq1, there is a lack of gastric acid secretion in response to various secretagogue stimuli. Ultrastructural analysis suggests that the gastric acid secretion defect in Foxq1-deficient mice might be due to impairment in the fusion of cytoplasmic tubulovesicles to the apical membrane of secretory canaliculi.
Resumo:
Previous work has shown that c-Myc is required for adequate vasculogenesis and angiogenesis. To further investigate the contribution of Myc to these processes, we conditionally expressed c-Myc in embryonic endothelial cells using a tetracycline-regulated system. Endothelial Myc overexpression resulted in severe defects in the embryonic vascular system. Myc-expressing embryos undergo widespread edema formation and multiple hemorrhagic lesions. They die between embryonic days 14.5 and 17.5. The changes in vascular permeability are not caused by deficiencies in vascular basement membrane composition or pericyte coverage. However, the overall turnover of endothelial cells is elevated as is revealed by increased levels of both proliferation and apoptosis. Whole-mount immunohistochemical analysis revealed alterations in the architecture of capillary networks. The dermal vasculature of Myc-expressing embryos is characterized by a reduction in vessel branching, which occurs despite upregulation of the proangiogenic factors vascular endothelial growth factor-A and angiopoietin-2. Thus, the net outcome of an excess of vascular endothelial growth factor-A and angiopoietin-2 in the face of an elevated cellular turnover appears to be a defect in vascular integrity.