44 resultados para Elemental Sulfur

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to understand how nanoparticles (NPs <100 nm) interact with cellular systems, potentially causing adverse effects, it is important to be able to detect and localize them within cells. Due to the small size of NPs, transmission electron microscopy (TEM) is an appropriate technique to use for visualizing NPs inside cells, since light microscopy fails to resolve them at a single particle level. However, the presence of other cellular and non-cellular nano-sized structures in TEM cell samples, which may resemble NPs in size, morphology and electron density, can obstruct the precise intracellular identification of NPs. Therefore, elemental analysis is recommended to confirm the presence of NPs inside the cell. The present study highlights the necessity to perform elemental analysis, specifically energy filtering TEM, to confirm intracellular NP localization using the example of quantum dots (QDs). Recently, QDs have gained increased attention due to their fluorescent characteristics, and possible applications for biomedical imaging have been suggested. Nevertheless, potential adverse effects cannot be excluded and some studies point to a correlation between intracellular particle localization and toxic effects. J774.A1 murine macrophage-like cells were exposed to NH2 polyethylene (PEG) QDs and elemental co-localization analysis of two elements present in the QDs (sulfur and cadmium) was performed on putative intracellular QDs with electron spectroscopic imaging (ESI). Both elements were shown on a single particle level and QDs were confirmed to be located inside intracellular vesicles. Nevertheless, ESI analysis showed that not all nano-sized structures, initially identified as QDs, were confirmed. This observation emphasizes the necessity to perform elemental analysis when investigating intracellular NP localization using TEM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism underlying the mineralization of bone is well studied and yet it remains controversial. Inherent difficulties of imaging mineralized tissues and the aqueous solubility of calcium and phosphate, the 2 ions which combine to form bone mineral crystals, limit current analyses of labile diffusible, amorphous, and crystalline intermediates by electron microscopy. To improve the retention of calcium and phosphorus, we developed a pseudo nonaqueous processing approach and used it to characterize biomineralization foci, extracellular sites of hydroxyapatite deposition in osteoblastic cell cultures. Since mineralization of UMR106-01 osteoblasts is temporally synchronized and begins 78 h after plating, we used these cultures to evaluate the effectiveness of our method when applied to cells just prior to the formation of the first mineral crystals. Our approach combines for the first time 3 well-established methods with a fourth one, i.e. dry ultrathin sectioning. Dry ultrathin sectioning with an oscillating diamond knife was used to produce electron spectroscopic images of mineralized biomineralization foci which were high-pressure frozen and freeze substituted. For comparison, cultures were also treated with conventional processing and wet sectioning. The results show that only the use of pseudo nonaqueous processing was able to detect extracellular sites of early calcium and phosphorus enrichment at 76 h, several hours prior to detection of mineral crystals within biomineralization foci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homeopathic preparations are used in homeopathy and anthroposophic medicine. Although there is evidence of effectiveness in several clinical studies, including double-blinded randomized controlled trials, their nature and mode of action could not be explained with current scientific approaches yet. Several physical methods have already been applied to investigate homeopathic preparations but it is yet unclear which methods are best suited to identify characteristic physicochemical properties of homeopathic preparations. The aim of this study was to investigate homeopathic preparations with UV-spectroscopy. In a blinded, randomized, controlled experiment homeopathic preparations of copper sulfate (CuSO(4); 11c-30c), quartz (SiO(2); 10c-30c, i.e., centesimal dilution steps) and sulfur (S; 11×-30×, i.e., decimal dilution steps) and controls (one-time succussed diluent) were investigated using UV-spectroscopy and tested for contamination by inductively coupled plasma mass spectrometry (ICP-MS). The UV transmission for homeopathic preparations of CuSO(4) preparations was significantly lower than in controls. The transmission seemed to be also lower for both SiO(2) and S, but not significant. The mean effect size (95% confidence interval) was similar for the homeopathic preparations: CuSO(4) (pooled data) 0.0544% (0.0260-0.0827%), SiO(2) 0.0323% (-0.0064% to 0.0710%) and S 0.0281% (-0.0520% to 0.1082%). UV transmission values of homeopathic preparations had a significantly higher variability compared to controls. In none of the samples the concentration of any element analyzed by ICP-MS exceeded 100 ppb. Lower transmission of UV light may indicate that homeopathic preparations are less structured or more dynamic than their succussed pure solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results from the international field campaign DAURE (Detn. of the sources of atm. Aerosols in Urban and Rural Environments in the Western Mediterranean), with the objective of apportioning the sources of fine carbonaceous aerosols. Submicron fine particulate matter (PM1) samples were collected during Feb.-March 2009 and July 2009 at an urban background site in Barcelona (BCN) and at a forested regional background site in Montseny (MSY). We present radiocarbon (14C) anal. for elemental and org. carbon (EC and OC) and source apportionment for these data. We combine the results with those from component anal. of aerosol mass spectrometer (AMS) measurements, and compare to levoglucosan-based ests. of biomass burning OC, source apportionment of filter data with inorg. compn. + EC + OC, submicron bulk potassium (K) concns., and gaseous acetonitrile concns. At BCN, 87 % and 91 % of the EC on av., in winter and summer, resp., had a fossil origin, whereas at MSY these fractions were 66 % and 79 %. The contribution of fossil sources to org. carbon (OC) at BCN was 40 % and 48 %, in winter and summer, resp., and 31 % and 25 % at MSY. The combination of results obtained using the 14C technique, AMS data, and the correlations between fossil OC and fossil EC imply that the fossil OC at Barcelona is ∼47 % primary whereas at MSY the fossil OC is mainly secondary (∼85 %). Day-to-day variation in total carbonaceous aerosol loading and the relative contributions of different sources predominantly depended on the meteorol. transport conditions. The estd. biogenic secondary OC at MSY only increased by ∼40 % compared to the order-of-magnitude increase obsd. for biogenic volatile org. compds. (VOCs) between winter and summer, which highlights the uncertainties in the estn. of that component. Biomass burning contributions estd. using the 14C technique ranged from similar to slightly higher than when estd. using other techniques, and the different estns. were highly or moderately correlated. Differences can be explained by the contribution of secondary org. matter (not included in the primary biomass burning source ests.), and/or by an over-estn. of the biomass burning OC contribution by the 14C technique if the estd. biomass burning EC/OC ratio used for the calcns. is too high for this region. Acetonitrile concns. correlate well with the biomass burning EC detd. by 14C. K is a noisy tracer for biomass burning. [on SciFinder(R)]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homeopathic remedies are produced by potentising, that is, the serial logarithmic dilution and succussion of a mother tincture. Techniques like ultraviolet spectroscopy, nuclear magnetic resonance, calorimetry, or thermoluminescence have been used to investigate their physical properties. In this study, homeopathic centesimal (c) potencies (6c to 30c) of copper sulfate, Hypericum perforatum, and sulfur as well as succussed water controls were prepared. Samples of these preparations were exposed to external physical factors like heat, pressure, ultraviolet radiation, or electromagnetic fields to mimic possible everyday storage conditions. The median transmissions from 190nm to 340nm and 220nm to 340nm were determined by ultraviolet light spectroscopy on five measurement days distributed over several months. Transmissions of controls and potencies of sulfur differed significantly on two of five measurement days and after exposure to physical factors. Transmissions of potencies exposed to ultraviolet light and unexposed potencies of copper sulfate and Hypericum perforatum differed significantly. Potency levels 6c to 30c were also compared, and wavelike patterns of higher and lower transmissions were found. The Kruskal-Wallis test yielded significant differences for the potency levels of all three substances. Aiming at understanding the physical properties of homeopathic preparations, this study confirmed and expanded the findings of previous studies.