4 resultados para Electropalatography (EPG)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Increased parasite resistance and recurrent airway obstruction in horses of a high-prevalence family
Resumo:
BACKGROUND: Equine recurrent airway obstruction (RAO) shares many characteristics with human asthma. In humans, an inverse relationship between susceptibility to asthma and resistance to parasites is suspected. HYPOTHESIS/OBJECTIVES: Members of a high-incidence RAO half-sibling family (F) shed fewer strongylid eggs compared with RAO-unaffected pasture mates (PM) and that RAO-affected horses shed fewer eggs than RAO-unaffected half-siblings. ANIMALS: Seventy-three F and 73 unrelated, age matched PM. METHODS: Cases and controls kept under the same management and deworming regime were examined. Each individual was classified as RAO affected or RAO unaffected and fecal samples were collected before and 1-3 weeks and 3 months after deworming. Samples were analyzed by combined sedimentation-flotation and modified McMaster methods and classified into 3 categories of 0 eggs per gram of feces (EpG), 1-100 EpG, and > 100 EpG, respectively. RESULTS: PM compared with RAO-affected F had a 16.7 (95% confidence interval [CI]: 2.0-136.3) times higher risk for shedding > 100 EpG compared with 0 EpG and a 5.3 (95% CI: 1.0-27.4) times higher risk for shedding > 100 EpG compared with 0 EpG. There was no significant effect when RAO-unaffected F were compared with their PM. RAO-unaffected compared with RAO-affected offspring had a 5.8 (95% CI: 0.0-1.0) times higher risk for shedding 1-100 EpG. Age, sex, breed, and sharing pastures with other species had no significant confounding effects. CONCLUSION AND CLINICAL IMPORTANCE: RAO is associated with resistance against strongylid parasites in a high-prevalence family.
Resumo:
Ethanolamine phosphoglycerol (EPG) is a protein modification attached exclusively to eukaryotic elongation factor 1A (eEF1A). In mammals and plants, EPG is linked to conserved glutamate residues located in eEF1A domains II and III, whereas in the unicellular eukaryote Trypanosoma brucei, only domain III is modified by a single EPG. A biosynthetic precursor of EPG and structural requirements for EPG attachment to T. brucei eEF1A have been reported, but nothing is known about the EPG modifying enzyme(s). By expressing human eEF1A in T. brucei, we now show that EPG attachment to eEF1A is evolutionarily conserved between T. brucei and Homo sapiens. In contrast, S. cerevisiae eEF1A, which has been shown to lack EPG is not modified in T. brucei. Furthermore, we show that eEF1A cannot functionally complement across species when using T. brucei and S. cerevisiae as model organisms. However, functional complementation in yeast can be obtained using eEF1A chimera containing domains II or III from other species. In contrast, yeast domain I is strictly required for functional complementation in S. cerevisiae.
Resumo:
Eukaryotic elongation factor 1A (eEF1A) is the only protein modified by ethanolamine phosphoglycerol (EPG). In mammals and plants, EPG is attached to conserved glutamate residues located in eEF1A domains II and III, whereas in the unicellular eukaryote, Trypanosoma brucei, a single EPG moiety is attached to domain III. A biosynthetic precursor of EPG and structural requirements for EPG attachment to T. brucei eEF1A have been reported, but the role of this unique protein modification in cellular growth and eEF1A function has remained elusive. Here we report, for the first time in a eukaryotic cell, a model system to study potential roles of EPG. By down-regulation of EF1A expression and subsequent complementation of eEF1A function using conditionally expressed exogenous eEF1A (mutant) proteins, we show that eEF1A lacking EPG complements trypanosomes deficient in endogenous eEF1A, demonstrating that EPG attachment is not essential for normal growth of T. brucei in culture.
Resumo:
Protozoan parasites are one of the major causes of diseases worldwide. The vector transmitted parasites exhibit complex life cycles involving interactions between humans, protozoa, and arthropods. In order to adapt themselves to the changing microenvironments, they have to undergo complex morphological and metabolic changes. These changes can be brought about by expressing a new pool of proteins in the cell or by modifying the existing repertoire of proteins via posttranslational modifications (PTMs). PTMs involve covalent modification and processing of proteins thereby modulating their functions. Some of these changes may involve PTMs of parasite proteins to help the parasite survive within the host and the vector. Out of many PTMs known, three are unique since they occur only on single proteins: ethanolamine phosphoglycerol (EPG) glutamate, hypusine and diphthamide. These modifications occur on eukaryotic elongation factor 1A (eEF1A), eukaryotic initiation factor 5A (eIF5A) and eukaryotic elongation factor 2 (eEF2), respectively. Interestingly, the proteins carrying these unique modifications are all involved in the elongation steps of translation. Here we review these unique PTMs, which are well conserved in protozoan parasites, and discuss their roles in viability and pathogenesis of parasites. Characterization of these modifications and studying their roles in physiology as well as pathogenesis will provide new insights in parasite biology, which may also help in developing new therapeutic interventions.