2 resultados para Electronic equipment
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.
Resumo:
BACKGROUND A rapid review, guided by a protocol, was conducted to inform development of the World Health Organization's guideline on personal protective equipment in the context of the ongoing (2013-present) Western African filovirus disease outbreak, with a focus on health care workers directly caring for patients with Ebola or Marburg virus diseases. METHODS Electronic databases and grey literature sources were searched. Eligibility criteria initially included comparative studies on Ebola and Marburg virus diseases reported in English or French, but criteria were expanded to studies on other viral hemorrhagic fevers and non-comparative designs due to the paucity of studies. After title and abstract screening (two people to exclude), full-text reports of potentially relevant articles were assessed in duplicate. Fifty-seven percent of extraction information was verified. The Grading of Recommendations Assessment, Development and Evaluation framework was used to inform the quality of evidence assessments. RESULTS Thirty non-comparative studies (8 related to Ebola virus disease) were located, and 27 provided data on viral transmission. Reporting of personal protective equipment components and infection prevention and control protocols was generally poor. CONCLUSIONS Insufficient evidence exists to draw conclusions regarding the comparative effectiveness of various types of personal protective equipment. Additional research is urgently needed to determine optimal PPE for health care workers caring for patients with filovirus.