19 resultados para Electron ion interaction pseudo potential(EIIP)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical thrombectomy in ischemic stroke is of increasing interest as it is a promising strategy for fast and efficient recanalization. Several thrombectomy devices have been introduced to the armentarium of mechanical thrombectomy. Currently, new devices are under development and are continuously added to the neurointerventional tool box. Each device advocated so far has a different design and mechanical properties in terms of thrombus-device interaction. Therefore, a systematic evaluation under standardized conditions in vivo of these new devices is needed. The purpose of this study was to evaluate the efficiency, thrombus-device interaction, and potential complications of the novel Phenox CRC for distal mechanical thrombectomy in vivo. The device was evaluated in an established animal model in the swine. Recanalization rate, thromboembolic events, vasospasm, and complications were assessed. Radiopaque thrombi (2 cm length) were used for the visualization of thrombus-device interaction during retrieval. The Phenox CRC (4 mm diameter) was assessed in 15 vessel occlusions. For every occlusion a maximum of 3 retrieval attempts were performed. Complete recanalization (TICI 3/TIMI 3) was achieved in 86.7% of vessel occlusions. In 66.7% (10/15), the first retrieval attempt was successful, and in 20% (3/15), the second attempt led to complete recanalization of the parent artery. In 2 cases (13.3%) thrombus retrieval was not successful (TICI 0/TIMI 0). In 1 case (6.7%) a minor embolic event occurred in a small side branch. No distal thromboembolic event was observed during the study. Thrombus-device interaction illustrated the entrapment of the thrombus by the microfilaments and the proximal cage of the device. No significant thrombus compression was observed. No vessel perforation, dissection, or fracture of the device occurred. In this small animal study, the Phenox CRC was a safe and effective device for mechanical thrombectomy. The unique design with a combination of microfilaments and proximal cage reduces thrombus compression with a consequently high recanalization and low complication rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of liquid xenon to low-energy electronic recoils is relevant in the search for dark-matter candidates which interact predominantly with atomic electrons in the medium, such as axions or axionlike particles, as opposed to weakly interacting massive particles which are predicted to scatter with atomic nuclei. Recently, liquid-xenon scintillation light has been observed from electronic recoils down to 2.1 keV, but without applied electric fields that are used in most xenon dark-matter searches. Applied electric fields can reduce the scintillation yield by hindering the electron-ion recombination process that produces most of the scintillation photons. We present new results of liquid xenon's scintillation emission in response to electronic recoils as low as 1.5 keV, with and without an applied electric field. At zero field, a reduced scintillation output per unit deposited energy is observed below 10 keV, dropping to nearly 40% of its value at higher energies. With an applied electric field of 450 V/cm, we observe a reduction of the scintillation output to about 75% relative to the value at zero field. We see no significant energy dependence of this value between 1.5 and 7.8 keV. With these results, we estimate the electronic-recoil energy thresholds of ZEPLIN-III, XENON10, XENON100, and XMASS to be 2.8, 2.5, 2.3, and 1.1 keV, respectively, validating their excellent sensitivity to low-energy electronic recoils.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cellulose nanofibers are an attractive component of a broad range of nanomaterials. Their intriguing mechanical properties and low cost, as well as the renewable nature of cellulose make them an appealing alternative to carbon nanotubes (CNTs), which may pose a considerable health risk when inhaled. Little is known, however, concerning the potential toxicity of aerosolized cellulose nanofibers. Using a 3D in vitro triple cell coculture model of the human epithelial airway barrier, it was observed that cellulose nanofibers isolated from cotton (CCN) elicited a significantly (p < 0.05) lower cytotoxicity and (pro-)inflammatory response than multiwalled CNTs (MWCNTs) and crocidolite asbestos fibers (CAFs). Electron tomography analysis also revealed that the intracellular localization of CCNs is different from that of both MWCNTs and CAFs, indicating fundamental differences between each different nanofibre type in their interaction with the human lung cell coculture. Thus, the data shown in the present study highlights that not only the length and stiffness determine the potential detrimental (biological) effects of any nanofiber, but that the material used can significantly affect nanofiber-cell interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resveratrol is a naturally occurring polyphenol that is often used as a food supplement. Many positive health effects, including cardio protection, tumor suppression, and immune modulation, are associated with the intake of resveratrol. Resveratrol is well tolerated in healthy subjects without any comedication. However, supplemental doses of resveratrol in the range of 1 g/day or above by far exceed the natural intake through food. Whether resveratrol-drug interactions can be harmful in patients taking additional medications remains unknown. Recent in vivo studies and clinical trials indicate a possible drug-drug interaction potential using high-dosage formulations. In this review, the known in vitro and in vivo effects of resveratrol on various cytochrome P450 (CYP) isoenzymes are summarized. They are discussed in relation to clinically relevant plasma concentrations in humans. We conclude that resveratrol may lead to interactions with various CYPs, especially when taken in high doses. Aside from systemic CYP inhibition, intestinal interactions must also be considered. They can potentially lead to reduced first-pass metabolism, resulting in higher systemic exposure to certain coadministrated CYP substrates. Therefore, patients who ingest high doses of this food supplement combined with additional medications may be at risk of experiencing clinically relevant drug-drug interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT: Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Somatostatin-based radioligands have been shown to have sensitive imaging properties for neuroendocrine tumours and their metastases. The potential of [(55)Co(dotatoc)] (dotatoc =4,7,10-tricarboxymethyl-1,4,7,10-tetraazacyclododecane-1-ylacetyl-D-Phe-(Cys-Tyr-D-Trp-Lys-Thr-Cys)-threoninol (disulfide bond)) as a new radiopharmaceutical agent for PET has been evaluated. (57)Co was used as a surrogate of the positron emitter (55)Co and the pharmacokinetics of [(57)Co(dotatoc)] were investigated by using two nude mouse models. The somatostatin receptor subtype (sst1-sst5) affinity profile of [(nat)Co(dotatoc)] on membranes transfected with human somatostatin receptor subtypes was assessed by using autoradiographic methods. These studies revealed that [(57)Co(dotatoc)] is an sst2-specific radiopeptide which presents the highest affinity ever found for the sst2 receptor subtype. The rate of internalisation into the AR4-2J cell line also was the highest found for any somatostatin-based radiopeptide. Biodistribution studies, performed in nude mice bearing an AR4-2J tumour or a transfected HEK-sst2 cell-based tumour, showed high and specific uptake in the tumour and in other sst-receptor-expressing tissues, which reflects the high receptor binding affinity and the high rate of internalisation. The pharmacologic differences between [(57)Co(dotatoc)] and [(67)Ga(dotatoc)] are discussed in terms of the structural parameters found for the chelate models [Co(II)(dota)](2-) and [Ga(III)(dota)](-) whose X-ray structures have been determined. Both chelates show six-fold coordination in pseudo-octahedral arrangements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential health effects of inhaled engineered nanoparticles are almost unknown. To avoid and replace toxicity studies with animals, a triple cell co-culture system composed of epithelial cells, macrophages and dendritic cells was established, which simulates the most important barrier functions of the epithelial airway. Using this model, the toxic potential of titanium dioxide was assessed by measuring the production of reactive oxygen species and the release of tumour necrosis factor alpha. The intracellular localisation of titanium dioxide nanoparticles was analyzed by energy filtering transmission electron microscopy. Titanium dioxide nanoparticles were detected as single particles without membranes and in membrane-bound agglomerates. Cells incubated with titanium dioxide particles showed an elevated production of reactive oxygen species but no increase of the release of tumour necrosis factor alpha. Our in vitro model of the epithelial airway barrier offers a valuable tool to study the interaction of particles with lung cells at a nanostructural level and to investigate the toxic potential of nanoparticles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[1] Two millimeter-sized hydrothermal monazites from an open fissure (cleft) that developed late during a dextral transpressional deformation event in the Aar Massif, Switzerland, have been investigated using electron microprobe and ion probe. The monazites are characterized by high Th/U ratios typical of other hydrothermal monazites. Deformation events in the area have been subdivided into three phases: (D1) main thrusting including formation of a new schistosity, (D2) dextral transpression, and (D3) local crenulation including development of a new schistosity. The two younger deformational structures are related to a subvertically oriented intermediate stress axis, which is characteristic for strike slip deformation. The inferred stress environment is consistent with observed kinematics and the opening of such clefts. Therefore, the investigated monazite-bearing cleft formed at the end of D2 and/or D3, and during dextral movements along NNW dipping planes. Interaction of cleft-filling hydrothermal fluid with wall rock results in rare earth element (REE) mineral formation and alteration of the wall rock. The main newly formed REE minerals are Y-Si, Y-Nb-Ti minerals, and monazite. Despite these mineralogical changes, the bulk chemistry of the system remains constant and thus these mineralogical changes require redistribution of elements via a fluid over short distances (centimeter). Low-grade alteration enables local redistribution of REE, related to the stability of the accessory phases. This allows high precision isotope dating of cleft monazite. 232Th/208Pb ages are not affected by excess Pb and yield growth domain ages between 8.03 ± 0.22 and 6.25 ± 0.60 Ma. Monazite crystallization in brittle structures is coeval or younger than 8 Ma zircon fission track data and hence occurred below 280°C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have recently developed a method to obtain distributed atomic polarizabilities adopting a partitioning of the molecular electron density (for example, the Quantum Theory of Atoms in Molecules, [1]), calculated with or without an applied electric field. The procedure [2] allows to obtained atomic polarizability tensors, which are perfectly exportable, because quite representative of an atom in a given functional group. Among the many applications of this idea, the calculation of crystal susceptibility is easily available, either from a rough estimation (the polarizability of the isolated molecule is used) or from a more precise estimation (the polarizability of a molecule embedded in a cluster representing the first coordination sphere is used). Lorentz factor is applied to include the long range effect of packing, which is enhancing the molecular polarizability. Simple properties like linear refractive index or the gyration tensor can be calculated at relatively low costs and with good precision. This approach is particularly useful within the field of crystal engineering of organic/organometallic materials, because it would allow a relatively easy prediction of a property as a function of the packing, thus allowing "reverse crystal engineering". Examples of some amino acid crystals and salts of amino acids [3] will be illustrated, together with other crystallographic or non-crystallographic applications. For example, the induction and dispersion energies of intermolecular interactions could be calculated with superior precision (allowing anisotropic van der Waals interactions). This could allow revision of some commonly misunderstood intermolecular interactions, like the halogen bonding (see for example the recent remarks by Stone or Gilli [4]). Moreover, the chemical reactivity of coordination complexes could be reinvestigated, by coupling the conventional analysis of the electrostatic potential (useful only in the circumstances of hard nucleophilic/electrophilic interaction) with the distributed atomic polarizability. The enhanced reactivity of coordinated organic ligands would be better appreciated. [1] R. F. W. Bader, Atoms in Molecules: A Quantum Theory. Oxford Univ. Press, 1990. [2] A. Krawczuk-Pantula, D. Pérez, K. Stadnicka, P. Macchi, Trans. Amer. Cryst. Ass. 2011, 1-25 [3] A. S. Chimpri1, M. Gryl, L. H.R. Dos Santos1, A. Krawczuk, P. Macchi Crystal Growth & Design, in the press. [4] a) A. J. Stone, J. Am. Chem. Soc. 2013, 135, 7005−7009; b) V. Bertolasi, P. Gilli, G. Gilli Crystal Growth & Design, 2013, 12, 4758-4770.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the interaction between a magnetic dipole mimicking the Gerasimovich magnetic anomaly on the lunar surface and the solar wind in a self-consistent 3-D quasi-neutral hybrid simulation where ions are modeled as particles and electrons as a charge-neutralizing fluid. Especially, we consider the origin of the recently observed electric potentials at lunar magnetic anomalies. An antimoonward Hall electric field forms in our simulation resulting in a potential difference of <300V on the lunar surface, in which the value is similar to observations. Since the hybrid model assumes charge neutrality, our results suggest that the electric potentials at lunar magnetic anomalies can be formed by decoupling of ion and electron motion even without charge separation.