62 resultados para Electromagnetic interference.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present a geospatial model to predict the radiofrequency electromagnetic field from fixed site transmitters for use in epidemiological exposure assessment. The proposed model extends an existing model toward the prediction of indoor exposure, that is, at the homes of potential study participants. The model is based on accurate operation parameters of all stationary transmitters of mobile communication base stations, and radio broadcast and television transmitters for an extended urban and suburban region in the Basel area (Switzerland). The model was evaluated by calculating Spearman rank correlations and weighted Cohen's kappa (kappa) statistics between the model predictions and measurements obtained at street level, in the homes of volunteers, and in front of the windows of these homes. The correlation coefficients of the numerical predictions with street level measurements were 0.64, with indoor measurements 0.66, and with window measurements 0.67. The kappa coefficients were 0.48 (95%-confidence interval: 0.35-0.61) for street level measurements, 0.44 (95%-CI: 0.32-0.57) for indoor measurements, and 0.53 (95%-CI: 0.42-0.65) for window measurements. Although the modeling of shielding effects by walls and roofs requires considerable simplifications of a complex environment, we found a comparable accuracy of the model for indoor and outdoor points.
Resumo:
In the last decade, few areas of biology have been transformed as thoroughly as RNA molecular biology. Without any doubt, one of the most significant advances has been the discovery of small (20-30 nucleotide) noncoding RNAs that regulate genes and genomes. The effects of small RNAs on gene expression and control are generally inhibitory, and the corresponding regulatory mechanisms are therefore collectively subsumed under the heading of RNA silencing and/or RNA interference. Two primary categories of these small RNAs - short interfering RNAs (siRNAs) and microRNAs (miRNAs) - act in both somatic and germline lineages of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA and miRNA-based regulation has direct implications for fundamental biology as well as disease aetiology and treatment as it is discussed in this review on 'new techniques in molecular biology'.
Resumo:
The traditional view of a predominant inferior parietal representation of gestures has been recently challenged by neuroimaging studies demonstrating that gesture production and discrimination may critically depend on inferior frontal lobe function. The aim of the present work was therefore to investigate the effect of transient disruption of these brain sites by continuous theta burst stimulation (cTBS) on gesture production and recognition.
Resumo:
Medulloblastoma is the most common malignant brain tumor in children and is associated with a poor outcome. We were interested in gaining further insight into the potential of targeting the human kinome as a novel approach to sensitize medulloblastoma to chemotherapeutic agents. A library of small interfering RNA (siRNA) was used to downregulate the known human protein and lipid kinases in medulloblastoma cell lines. The analysis of cell proliferation, in the presence or absence of a low dose of cisplatin after siRNA transfection, identified new protein and lipid kinases involved in medulloblastoma chemoresistance. PLK1 (polo-like kinase 1) was identified as a kinase involved in proliferation in medulloblastoma cell lines. Moreover, a set of 6 genes comprising ATR, LYK5, MPP2, PIK3CG, PIK4CA, and WNK4 were identified as contributing to both cell proliferation and resistance to cisplatin treatment in medulloblastoma cells. An analysis of the expression of the 6 target genes in primary medulloblastoma tumor samples and cell lines revealed overexpression of LYK5 and PIK3CG. The results of the siRNA screen were validated by target inhibition with specific pharmacological inhibitors. A pharmacological inhibitor of p110γ (encoded by PIK3CG) impaired cell proliferation in medulloblastoma cell lines and sensitized the cells to cisplatin treatment. Together, our data show that the p110γ phosphoinositide 3-kinase isoform is a novel target for combinatorial therapies in medulloblastoma.
Resumo:
The Long Term Evolution (LTE) cellular technology is expected to extend the capacity and improve the performance of current 3G cellular networks. Among the key mechanisms in LTE responsible for traffic management is the packet scheduler, which handles the allocation of resources to active flows in both the frequency and time dimension. This paper investigates for various scheduling scheme how they affect the inter-cell interference characteristics and how the interference in turn affects the user’s performance. A special focus in the analysis is on the impact of flow-level dynamics resulting from the random user behaviour. For this we use a hybrid analytical/simulation approach which enables fast evaluation of flow-level performance measures. Most interestingly, our findings show that the scheduling policy significantly affects the inter-cell interference pattern but that the scheduler specific pattern has little impact on the flow-level performance.
Resumo:
Chemotherapeutic drug resistance is one of the major causes for treatment failure in high-risk neuroblastoma (NB), the most common extra cranial solid tumor in children. Poor prognosis is typically associated with MYCN amplification. Here, we utilized a loss-of-function kinome-wide RNA interference screen to identify genes that cause cisplatin sensitization. We identified fibroblast growth factor receptor 2 (FGFR2) as an important determinant of cisplatin resistance. Pharmacological inhibition of FGFR2 confirmed the importance of this kinase in NB chemoresistance. Silencing of FGFR2 sensitized NB cells to cisplatin-induced apoptosis, which was regulated by the downregulation of the anti-apoptotic proteins BCL2 and BCLX(L). Mechanistically, FGFR2 was shown to activate protein kinase C-δ to induce BCL2 expression. FGFR2, as well as the ligand fibroblast growth factor-2, were consistently expressed in primary NB and NB cell lines, indicating the presence of an autocrine loop. Expression analysis revealed that FGFR2 correlates with MYCN amplification and with advanced stage disease, demonstrating the clinical relevance of FGFR2 in NB. These findings suggest a novel role for FGFR2 in chemoresistance and provide a rational to combine pharmacological inhibitors against FGFR2 with chemotherapeutic agents for the treatment of NB.Oncogene advance online publication, 1 October 2012; doi:10.1038/onc.2012.416.