18 resultados para Electrochemical capacitance spectroscopy

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The emerging application of long-term and high-quality ECG recording requires alternative electrodes to improve the signal quality and recording capability of surface skin electrodes. The esophageal ECG has the potential to overcome these limitations but necessitates novel recorder and lead designs. The electrode material is of particular interest, since the material has to ensure conflicting requirements like excellent biopotential recording properties and inertness. To this end, novel electrode materials like PEDOT and silver-PDMS as well as established electrode materials such as stainless steel, platinum, gold, iridium oxide, titanium nitride, and glassy carbon were investigated by long-term electrochemical impedance spectroscopy and model-based signal analysis using the derived in vitro interfacial properties in conjunction with a dedicated ECG amplifier. The results of this novel approach show that titanium nitride and iridium oxide featuring microstructured surfaces did not degrade when exposed to artificial acidic saliva. These materials provide low electrode potential drifts and insignificant signal distortion superior to surface skin electrodes making them compatible with accepted standards for ambulatory ECG. They are superior to the noble and polarizable metals such as platinum, silver, and gold that induced more signal distortions and are superior to esophageal stainless steel electrodes that corrode in artificial saliva. The study provides rigorous criteria for the selection of electrode materials for prolonged ECG recording by combining long-term in vitro electrode material properties with ECG signal quality assessment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As revealed for the first time by in situ scanning tunnelling spectroscopy (STS), ferrocene-modified Si(111) substrates show ambipolar field effect transistor (FET) behaviour upon electrolyte gating.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1x1) electrode and covered by Au(60 nm)@SlO(2) core shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+),V(+center dot) and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of similar to 3 x 10(5), and up to 9 x 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)- catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of anions on the redox behavior and structure of 11-ferrocenyl-1-undecanethiol (FcC11) monolayers (SAM) on Au(1 1 1) single crystal and Au(1 1 1-25 nm) thin film electrodes was investigated in 0.1 M solutions of HPF6, HClO4, HBF4, HNO3, and H2SO4 by cyclic voltammetry (CV) and in situ surface-enhanced infrared reflection-absorption spectroscopy (SEIRAS). We demonstrate that the FcC11 redox peaks shift toward positive potentials and broaden with increasing hydrophilicity of the anions. In situ surface-enhanced IR-spectroscopy (SEIRAS) provided direct access for the incorporation of anions into the oxidized adlayer. The coadsorption of anions is accompanied by the penetration of water molecules. The latter effect is particularly pronounced in aqueous HNO3 and H2SO4 electrolytes. The adlayer permeability increases with increasing hydrophilicity of the anions. We also found that even the neutral (reduced) FcC11 SAM is permeable for water molecules. Based on the property of interfacial water to reorient upon charge inversion, we propose a spectroscopic approach for estimating the potential of zero total charge of the FcC11-modified Au(1 1 1) electrodes in aqueous electrolytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge–discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g−1 at a current density of 10 μA cm−2 and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of dicyanobiphenyl-cyclophanes 1-6 with various pi-backbone conformations and characteristic n-type semiconductor properties is presented. Their synthesis, optical, structural, electrochemical, spectroelectrochemical, and packing properties are investigated. The X-ray crystal structures of all n-type rods allow the systematic correlation of structural features with physical properties. In addition, the results are supported by quantum mechanical calculations based on density functional theory. A two-step reduction process is observed for all n-type rods, in which the first step is reversible. The potential gap between the reduction processes depends linearly on the cos(2) value of the torsion angle phi between the pi-systems. Similarly, optical absorption spectroscopy shows that the vertical excitation energy of the conjugation band correlates with the cos(2) value of the torsion angle phi. These correlations demonstrate that the fixed intramolecular torsion angle phi is the dominant factor determining the extent of electron delocalization in these model compounds, and that the angle phi measured in the solid-state structure is a good proxy for the molecular conformation in solution. Spectroelectrochemical investigations demonstrate that conformational rigidity is maintained even in the radical anion form. In particular, the absorption bands corresponding to the SOMO-LUMO+i transitions are shifted bathochromically, whereas the absorption bands corresponding to the HOMO-SOMO transition are shifted hypsochromically with increasing torsion angle phi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tetrathiafulvalene donor has been attached to the naphthalene diimide core via a rigid bridge affording a new planar molecular dyad. Its electronic properties have been studied experimentally by the combination of electrochemistry and UV-vis-NIR spectroscopy. Various electronic excited charge-transfer states are generated in different oxidation states, leading to almost full absorption in the visible to near-IR region with high extinction coefficients. The observed electronic properties are explained on the basis of density-functional-theory. In particular, the oxidized radical species show a strong tendency to undergo aggregation, in which the long-distance attractive interactions overcome the electrostatic repulsions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly selective formation of 2+2 macrocycle 1 from 2,5-bis(3-formyl-2-hydroxyphenyl)-1,3,4-oxadiazole and a diamine-functionalized tetrathiafulvalene derivative is reported. Its electronic properties have been studied experimentally by the combination of electrochemistry and UV-vis-NIR spectroscopy. Particularly, its largely extended pi-conjugation renders this novel macrocycle simultaneously a good multielectron donor and a strong chromophore, which is rationalized on the basis of density functional theory. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of 15N-labeled 3-nitrotyrosine (NTyr) by gas chromatography/mass spectroscopy in protein hydrolyzates from activated RAW 264.7 macrophages incubated with 15N-L-arginine confirms that nitric oxide synthase (NOS) is involved in the nitration of protein-bound tyrosine (Tyr). An assay is presented for NTyr that employs HPLC with tandem electrochemical and UV detection. The assay involves enzymatic hydrolysis of protein, acetylation, solvent extraction, O-deacetylation, and dithionite reduction to produce an analyte containing N-acetyl-3-aminotyrosine, an electrochemically active derivative of NTyr. We estimate the level of protein-bound NTyr in normal rat plasma to be approximately 0-1 residues per 10(6) Tyr with a detection limit of 0.5 per 10(7) Tyr when > 100 nmol of Tyr is analyzed and when precautions are taken to limit nitration artifacts. Zymosan-treated RAW 264.7 cells were shown to have an approximately 6-fold higher level of protein-bound NTyr compared with control cells and cells treated with N(G)-monomethyl-L-arginine, an inhibitor of NOS. Intraperitoneal injection of F344 rats with zymosan led to a marked elevation in protein-bound NTyr to approximately 13 residues per 10(6) Tyr, an approximately 40-fold elevation compared with plasma protein of untreated rats; cotreatment with N(G)-monomethyl-L-arginine inhibited the formation of NTyr in plasma protein from blood and peritoneal exudate by 69% and 53%, respectively. This assay offers a highly sensitive and quantitative approach for investigating the role of reactive byproducts of nitric oxide in the many pathological conditions and disease states associated with NO(X) exposure such as inflammation and smoking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current–distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly and redox-properties of two viologen derivatives, N-hexyl-N-(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-H) and N,N-bis(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-SH), immobilized on Au(111)-(1x1) macro-electrodes were investigated by cyclic voltammetry, surface enhanced infrared spectroscopy (SEIRAS) and in situ scanning tunneling microscopy (STM). Depending on the assembly conditions one could distinguish three different types of adlayers for both viologens: a low coverage disordered and an ordered striped phase of flat oriented molecules as well as a high coverage monolayer composed of tilted viologen moieties. Both molecules, HS-6V6-H and HS-6V6-SH, were successfully immobilized on Au(poly) nano-electrodes, which gave a well-defined redox-response in the lower pA–current range. An in situ STM configuration was employed to explore electron transport properties of single molecule junctions Au(T)|HS-6V6-SH(HS-6V6-H)|Au(S). The observed sigmoidal potential dependence, measured at variable substrate potential ES and at constant bias voltage (ET–ES), was attributed to electronic structure changes of the viologen moiety during the one-electron reduction/re-oxidation process V2+ V+. Tunneling experiments in asymmetric, STM-based junctions Au(T)-S-6V6-H|Au(S) revealed current (iT)–voltage (ET) curves with a maximum located at the equilibrium potential of the redox-process V2+ V+. The experimental iT–ET characteristics of the HS-6V6-H–modified tunneling junction were tentatively attributed to a sequential two-step electron transfer mechanism.