21 resultados para Electrocardiography
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To review the accuracy of electrocardiography in screening for left ventricular hypertrophy in patients with hypertension. DESIGN: Systematic review of studies of test accuracy of six electrocardiographic indexes: the Sokolow-Lyon index, Cornell voltage index, Cornell product index, Gubner index, and Romhilt-Estes scores with thresholds for a positive test of > or =4 points or > or =5 points. DATA SOURCES: Electronic databases ((Pre-)Medline, Embase), reference lists of relevant studies and previous reviews, and experts. STUDY SELECTION: Two reviewers scrutinised abstracts and examined potentially eligible studies. Studies comparing the electrocardiographic index with echocardiography in hypertensive patients and reporting sufficient data were included. DATA EXTRACTION: Data on study populations, echocardiographic criteria, and methodological quality of studies were extracted. DATA SYNTHESIS: Negative likelihood ratios, which indicate to what extent the posterior odds of left ventricular hypertrophy is reduced by a negative test, were calculated. RESULTS: 21 studies and data on 5608 patients were analysed. The median prevalence of left ventricular hypertrophy was 33% (interquartile range 23-41%) in primary care settings (10 studies) and 65% (37-81%) in secondary care settings (11 studies). The median negative likelihood ratio was similar across electrocardiographic indexes, ranging from 0.85 (range 0.34-1.03) for the Romhilt-Estes score (with threshold > or =4 points) to 0.91 (0.70-1.01) for the Gubner index. Using the Romhilt-Estes score in primary care, a negative electrocardiogram result would reduce the typical pre-test probability from 33% to 31%. In secondary care the typical pre-test probability of 65% would be reduced to 63%. CONCLUSION: Electrocardiographic criteria should not be used to rule out left ventricular hypertrophy in patients with hypertension.
Resumo:
The emerging application of long-term and high-quality ECG recording requires alternative electrodes to improve the signal quality and recording capability of surface skin electrodes. The esophageal ECG has the potential to overcome these limitations but necessitates novel recorder and lead designs. The electrode material is of particular interest, since the material has to ensure conflicting requirements like excellent biopotential recording properties and inertness. To this end, novel electrode materials like PEDOT and silver-PDMS as well as established electrode materials such as stainless steel, platinum, gold, iridium oxide, titanium nitride, and glassy carbon were investigated by long-term electrochemical impedance spectroscopy and model-based signal analysis using the derived in vitro interfacial properties in conjunction with a dedicated ECG amplifier. The results of this novel approach show that titanium nitride and iridium oxide featuring microstructured surfaces did not degrade when exposed to artificial acidic saliva. These materials provide low electrode potential drifts and insignificant signal distortion superior to surface skin electrodes making them compatible with accepted standards for ambulatory ECG. They are superior to the noble and polarizable metals such as platinum, silver, and gold that induced more signal distortions and are superior to esophageal stainless steel electrodes that corrode in artificial saliva. The study provides rigorous criteria for the selection of electrode materials for prolonged ECG recording by combining long-term in vitro electrode material properties with ECG signal quality assessment.
Resumo:
Long-term electrocardiography (ECG) featuring adequate atrial and ventricular signal quality is highly desirable. Routinely used surface leads are limited in atrial signal sensitivity and recording capability impeding complete ECG delineation, i.e. in the presence of supraventricular arrhythmias. Long-term esophageal ECG might overcome these limitations but requires a dedicated lead system and recorder design. To this end, we analysed multiple-lead esophageal ECGs with respect to signal quality by describing the ECG waves as a function of the insertion level, interelectrode distance, electrode shape and amplifier's input range. The results derived from clinical data show that two bipolar esophageal leads, an atrial lead with short (15 mm) interelectrode distance and a ventricular lead with long (80 mm) interelectrode distance provide non-inferior ventricular signal strength and superior atrial signal strength compared to standard surface lead II. High atrial signal slope in particular is observed with the atrial esophageal lead. The proposed esophageal lead system in combination with an increased recorder input range of ±20 mV minimizes signal loss due to excessive electrode motion typically observed in esophageal ECGs. The design proposal might help to standardize long-term esophageal ECG registrations and facilitate novel ECG classification systems based on the independent detection of ventricular and atrial electrical activity.
Resumo:
Long-term electrocardiogram (ECG) signals might suffer from relevant baseline disturbances during physical activity. Motion artifacts in particular are more pronounced with dry surface or esophageal electrodes which are dedicated to prolonged ECG recording. In this paper we present a method called baseline wander tracking (BWT) that tracks and rejects strong baseline disturbances and avoids concurrent saturation of the analog front-end. The proposed algorithm shifts the baseline level of the ECG signal to the middle of the dynamic input range. Due to the fast offset shifts, that produce much steeper signal portions than the normal ECG waves, the true ECG signal can be reconstructed offline and filtered using computationally intensive algorithms. Based on Monte Carlo simulations we observed reconstruction errors mainly caused by the non-linearity inaccuracies of the DAC. However, the signal to error ratio of the BWT is higher compared to an analog front-end featuring a dynamic input ranges above 15 mV if a synthetic ECG signal was used. The BWT is additionally able to suppress (electrode) offset potentials without introducing long transients. Due to its structural simplicity, memory efficiency and the DC coupling capability, the BWT is dedicated to high integration required in long-term and low-power ECG recording systems.
Resumo:
Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here we present a graphics processor unit (GPU) based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to auto-regressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and 4 times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a 7-day high-resolution ECG is computed within less than 3 seconds. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.
Resumo:
PURPOSE Paroxysmal atrial fibrillation (PAF) often remains undiagnosed. Long-term surface ECG is used for screening, but has limitations. Esophageal ECG (eECG) allows recording high quality atrial signals, which were used to identify markers for PAF. METHODS In 50 patients (25 patients with PAF; 25 controls) an eECG and surface ECG was recorded simultaneously. Partially A-V blocked atrial runs (PBARs) were quantified, atrial signal duration in eECG was measured. RESULTS eECG revealed 1.8‰ of atrial premature beats in patients with known PAF to be PBARs with a median duration of 853ms (interquartile range (IQR) 813-1836ms) and a median atrial cycle length of 366ms (IQR 282-432ms). Even during a short recording duration of 2.1h (IQR 1.2-17.2h), PBARs occurred in 20% of PAF patients but not in controls (p=0.05). Left atrial signal duration was predictive for PAF (72% sensitivity, 80% specificity). CONCLUSIONS eECG reveals partially blocked atrial runs and prolonged left atrial signal duration - two novel surrogate markers for PAF.
Resumo:
Recent data have suggested a relation among long-term endurance sport practice, left atrial remodeling, and atrial fibrillation. We investigated the influence of an increased vagal tone, represented by the early repolarization (ER) pattern, on diastolic function and left atrial size in professional soccer players. Fifty-four consecutive athletes underwent electrocardiography, echocardiography, and exercise testing as part of their preparticipation screening. Athletes were divided into 2 groups according to presence or absence of an ER pattern, defined as a ST-segment elevation at the J-point (STE) > or =0.1 mm in 2 leads. For linear comparisons average STE was calculated. Mean age was 24 +/- 4 years. Twenty-five athletes (46%) showed an ER pattern. Athletes with an ER pattern had a significant lower heart rate (54 +/- 9 vs 62 +/- 11 beats/min, p = 0.024), an increased E/e' ratio (6.1 +/- 1.2 vs 5.1 +/- 1.0, p = 0.002), and larger volumes of the left atrium (25.6 +/- 7.3 vs 21.8 +/- 5.0 ml/m(2), p = 0.031) compared to athletes without an ER pattern. There were no significant differences concerning maximum workload, left ventricular dimensions, and systolic function. Univariate regression analysis revealed significant correlations among age, STE, and left atrial volume. In a stepwise multivariate regression analysis age, STE and e' contributed independently to left atrial size (r = 0.659, p <0.001). In conclusion, athletes with an ER pattern had an increased E/e' ratio, reflecting a higher left atrial filling pressure, contributing to left atrial remodeling over time.
Resumo:
Magnetic resonance spectroscopy enables insight into the chemical composition of spinal cord tissue. However, spinal cord magnetic resonance spectroscopy has rarely been applied in clinical work due to technical challenges, including strong susceptibility changes in the region and the small cord diameter, which distort the lineshape and limit the attainable signal to noise ratio. Hence, extensive signal averaging is required, which increases the likelihood of static magnetic field changes caused by subject motion (respiration, swallowing), cord motion, and scanner-induced frequency drift. To avoid incoherent signal averaging, it would be ideal to perform frequency alignment of individual free induction decays before averaging. Unfortunately, this is not possible due to the low signal to noise ratio of the metabolite peaks. In this article, frequency alignment of individual free induction decays is demonstrated to improve spectral quality by using the high signal to noise ratio water peak from non-water-suppressed proton magnetic resonance spectroscopy via the metabolite cycling technique. Electrocardiography (ECG)-triggered point resolved spectroscopy (PRESS) localization was used for data acquisition with metabolite cycling or water suppression for comparison. A significant improvement in the signal to noise ratio and decrease of the Cramér Rao lower bounds of all metabolites is attained by using metabolite cycling together with frequency alignment, as compared to water-suppressed spectra, in 13 healthy volunteers.
Resumo:
Introduction: Diagnosing arrhythmias by conventional Holter-ECG can be cumbersome because of artifacts, skin irritation and poor P-waves. In contrast, esophageal electrocardiography (eECG) is promising due to the anatomic relationship of the esophagus to the atria and its favorable bioelectric properties. Methods used: In an ambulant setting, we recorded eECGs from 10 volunteers with a novel, highly-miniaturized eECG recorder that is worn discretely behind the ear (1.5×1.8×5cm, 22grams). The device continuously records two eECG leads during 3 days with 500Hz sampling frequency and 24-bit resolution. Results: Mean ± SD recording time was 21.7±19.6 hours (max. 60 hours). Test persons were not limited in daily activities (e.g. eating, speaking) and only complained mild discomfort during probe insertion, which subsided later on. During 99.8% of time, the recorder acquired signals appropriate for further analysis. In unfiltered data, QRS complexes and P-waves were identifiable during >98% of time. P waves had higher amplitudes as compared to surface ECG (0.71 ± 0.42mV vs. 0.16 ± 0.03mV, p = 0.004). No complications occurred. Conclusion: Ambulatory eECG recording is safe, well tolerated and promising due to excellent P-wave detection, overcoming some limitations of conventional Holter ECG.
Resumo:
OBJECTIVE: To determine the frequency, age distribution and clinical presentation of carotid sinus hypersensitivity (CSH) among 373 patients (age range 15-92 years) referred to two autonomic referral centres during a 10-year period. METHODS: Carotid sinus massage (CSM) was performed both supine and during 60 degree head-up tilt. Beat-to-beat blood pressure, heart rate and a three-lead electrocardiography were recorded continuously. CSH was classified as cardioinhibitory (asystole > or = 3 s), vasodepressor (systolic blood pressure fall > or = 50 mm Hg) or mixed. All patients additionally underwent autonomic screening tests for orthostatic hypotension and autonomic failure. RESULTS: CSH was observed in 13.7% of all patients. The diagnostic yield of CSM was nil in patients aged < 50 years (n = 65), 2.4% in those aged 50-59 years (n = 82), 9.1% in those aged 60-69 years (n = 77), 20.7% in those aged 70-79 years (n = 92) and reached 40.4% in those > 80 years (n = 57). Syncope was the leading clinical symptom in 62.8%. In 27.4% of patients falls without definite loss of consciousness was the main clinical symptom. Mild and mainly systolic orthostatic hypotension was recorded in 17.6%; evidence of sympathetic or parasympathetic dysfunction was found in none. CONCLUSIONS: CSH was confirmed in patients > 50 years, the incidence steeply increasing with age. The current European Society of Cardiology guidelines that recommend testing for CSH in all patients > 40 years with syncope of unknown aetiology may need reconsideration. Orthostatic hypotension was noted in some patients with CSH, but evidence of sympathetic or parasympathetic failure was not found in any of them.
Resumo:
BACKGROUND: Sex differences in patients with patent foramen ovale (PFO) and cryptogenic stroke have not been systematically analyzed. We aimed to determine sex influences on demographics, vascular risk factors, clinical manifestations, stroke location, and clinical outcome. METHODS: One thousand two hundred eighty-eight consecutive patients with ischemic stroke or transient ischemic attack (TIA) were admitted to a single stroke center. All patients underwent a complete stroke workup including clinical examination, standard blood tests, cerebral and vascular imaging, transesophageal echocardiography, and 24-hour electrocardiography. In 500 patients, no definite etiology could be established (cryptogenic stroke/TIA). Of them, 167 patients (107 men and 60 women, mean age 52 +/- 13 years) had an PFO. RESULTS: The prevalence of PFO in patients with cryptogenic stroke or TIA was higher in men than in women (38% vs 28%, P = .014). Stroke severity and the prevalence of risk factors did not differ between the 2 sexes. There was an independent association between male sex and stroke location in the posterior cerebral circulation (OR 3.0, 95% CI 1.4-6.5, P = .006). Men and women did not differ in respect to PFO grade, prevalence of right-to-left shunt at rest, or coexistence of atrial septal aneurysm. Clinical outcome at 3 months was similar in both sexes. CONCLUSION: Patent foramen ovale was more prevalent in men than in women with cryptogenic stroke. There were no sex influences on age, risk factors, echocardiographic characteristics of PFO, or clinical outcome. Male sex was independently associated with stroke in the posterior cerebral circulation.
Resumo:
BACKGROUND AND PURPOSE: It is unclear whether very old patients benefit from organized inpatient (stroke unit) care. The aim of this work was to compare the clinical outcome of patients with first-ever ischemic stroke aged either >or=80 or <80 years who were treated conservatively (without cerebral revascularization) in a university-based stroke unit. PATIENTS AND METHODS: We included 147 (11%) patients >or=80 years and 1241 (89%) patients, <80 years. All patients underwent clinical examination, blood tests, electrocardiography (ECG), brain imaging and cerebrovascular ultrasound. Additional investigations were done at the discretion of the treating physician. The modified Rankin scale (mRS) score was used to assess the 3-month outcome (favorable: mRS, 0-1; poor: mRS, 2-6; death of any cause). RESULTS: Stroke severity did not differ between both groups [median National Institutes of Health Stroke Scale (NIHSS) score, 4]. Younger patients underwent magnetic resonance (MR) imaging of the brain, MR and catheter angiography and echocardiography (p<0.001) more frequently, whereas older patients underwent computed tomography of the brain and 24-hour ECG (p<0.001) more frequently. Stroke prevention included clopidogrel (p<0.001) and heparin (p=0.047) more often in older patients and aspirin (p=0.016) in younger patients. Recurrent ischemic events were similarly frequent in old (7%) and young (5%) patients. Favorable outcome was equally prevalent in old (71%) and young (76%) patients, whereas mortality was higher in older patients (7 and 3%, p=0.007). Admission NIHSS score >or=12 was the only independent predictor of unfavorable outcome (odds ratio, 19.6; 95% confidence interval, 9.7-39.6; p<0.001). CONCLUSION: Our work provides further evidence that also the oldest patients may benefit from conservative stroke unit care.
The optimal lead insertion depth for esophageal ECG recordings with respect to atrial signal quality
Resumo:
BACKGROUND Diagnosing supraventricular arrhythmias by conventional long-term ECG can be cumbersome because of poor p-waves. Esophageal long-term electrocardiography (eECG) has an excellent sensitivity for atrial signals and may overcome this limitation. However, the optimal lead insertion depth (OLID) is not known. METHODS We registered eECGs at different lead insertion depths in 27 patients and analyzed 199,716 atrial complexes with respect to signal amplitude and slope. Correlation and regression analyses were used to find a criterion for OLID. RESULTS Atrial signal amplitudes and slopes significantly depend on lead insertion depth. OLID correlates with body height (rSpearman=0.71) and can be estimated by OLID [cm]=0.25*body height[cm]-7cm. At this insertion depth, we recorded the largest esophageal atrial signal amplitudes (1.27±0.86mV), which were much larger compared to conventional surface lead II (0.19±0.10mV, p<0.0001). CONCLUSION The OLID depends on body height and can be calculated by a simple regression formula.
Resumo:
INTRODUCTION Rhythm disturbances in children with structurally normal hearts are usually associated with abnormalities in cardiac ion channels. The phenotypic expression of these abnormalities ("channelopathies") includes: long and short QT syndromes, Brugada syndrome, congenital sick sinus syndrome, catecholaminergic polymorphic ventricular tachycardia, Lènegre-Lev disease, and/or different degrees of cardiac conduction disease. METHODS The study group consisted of three male patients with sick sinus syndrome, intraventricular conduction disease, and monomorphic sustained ventricular tachycardia. Clinical data and results of electrocardiography, Holter monitoring, electrophysiology, and echocardiography are described. RESULTS In all patients, the ECG during sinus rhythm showed right bundle branch block and long QT intervals. First-degree AV block was documented in two subjects, and J point elevation in one. A pacemaker was implanted in all cases due to symptomatic bradycardia (sick sinus syndrome). Atrial tachyarryhthmias were observed in two patients. The common characteristic ventricular arrhythmia was a monomorphic sustained ventricular tachycardia, inducible with ventricular stimulation and sensitive to lidocaine. In one patient, radiofrequency catheter ablation was successfully performed. No structural abnormalities were found in echocardiography in the study group. CONCLUSION Common clinical and ECG features suggest a common pathophysiology in this group of patients with congenital severe electrical disease.