7 resultados para Electrical energy

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Energy-harvesting devices attract wide interest as power supplies of today's medical implants. Their long lifetime will spare patients from repeated surgical interventions. They also offer the opportunity to further miniaturize existing implants such as pacemakers, defibrillators or recorders of bio signals. A mass imbalance oscillation generator, which consists of a clockwork from a commercially available automatic wrist watch, was used as energy harvesting device to convert the kinetic energy from the cardiac wall motion to electrical energy. An MRI-based motion analysis of the left ventricle revealed basal regions to be energetically most favorable for the rotating unbalance of our harvester. A mathematical model was developed as a tool for optimizing the device's configuration. The model was validated by an in vitro experiment where an arm robot accelerated the harvesting device by reproducing the cardiac motion. Furthermore, in an in vivo experiment, the device was affixed onto a sheep heart for 1 h. The generated power in both experiments-in vitro (30 μW) and in vivo (16.7 μW)-is sufficient to power modern pacemakers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An autonomous energy source within a human body is of key importance in the development of medical implants. This work deals with the modelling and the validation of an energy harvesting device which converts the myocardial contractions into electrical energy. The mechanism consists of a clockwork from a commercially available wrist watch. We developed a physical model which is able to predict the total amount of energy generated when applying an external excitation. For the validation of the model, a custom-made hexapod robot was used to accelerate the harvesting device along a given trajectory. We applied forward kinematics to determine the actual motion experienced by the harvesting device. The motion provides translational as well as rotational motion information for accurate simulations in three-dimensional space. The physical model could be successfully validated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Contemporary pacemakers (PMs) are powered by primary batteries with a limited energy-storing capacity. PM replacements because of battery depletion are common and unpleasant and bear the risk of complications. Batteryless PMs that harvest energy inside the body may overcome these limitations. OBJECTIVE: The goal of this study was to develop a batteryless PM powered by a solar module that converts transcutaneous light into electrical energy. METHODS: Ex vivo measurements were performed with solar modules placed under pig skin flaps exposed to different irradiation scenarios (direct sunlight, shade outdoors, and indoors). Subsequently, 2 sunlight-powered PMs featuring a 4.6-cm2 solar module were implanted in vivo in a pig. One prototype, equipped with an energy buffer, was run in darkness for several weeks to simulate a worst-case scenario. RESULTS: Ex vivo, median output power of the solar module was 1963 μW/cm2 (interquartile range [IQR] 1940-2107 μW/cm2) under direct sunlight exposure outdoors, 206 μW/cm2 (IQR 194-233 μW/cm2) in shade outdoors, and 4 μW/cm2 (IQR 3.6-4.3 μW/cm2) indoors (current PMs use approximately 10-20 μW). Median skin flap thickness was 4.8 mm. In vivo, prolonged SOO pacing was performed even with short irradiation periods. Our PM was able to pace continuously at a rate of 125 bpm (3.7 V at 0.6 ms) for 1½ months in darkness. CONCLUSION: Tomorrow's PMs might be batteryless and powered by sunlight. Because of the good skin penetrance of infrared light, a significant amount of energy can be harvested by a subcutaneous solar module even indoors. The use of an energy buffer allows periods of darkness to be overcome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiac pacemakers are routinely used for the treatment of bradyarrhythmias. Contemporary pacemakers are reliable and allow for a patient specific programming. However, pacemaker replacements due to battery depletion are common (~25 % of all implantation procedures) and bear the risk of complications. Batteryless pacemakers may allow overcoming this limitation. To power a batteryless pacemaker, a mechanism for intracorporeal energy harvesting is required. Such a generator may consist out of subcutaneously implanted solar cells, transforming the small amount of transcutaneously available light into electrical energy. Alternatively, intravascular turbines may harvest energy from the blood flow. Energy may also be harvested from the ventricular wall motion by a dedicated mechanical clockwork converting motion into electrical energy. All these approaches have successfully been tested in vivo. Pacemaker leads constitute another Achilles heel of contemporary pacemakers. Thus, leadless devices are desired. Miniaturized pacemaker circuits and suitable energy harvesting mechanisms (incorporated in a single device) may allow catheter-based implantation of the pacemaker in the heart. Such miniaturized battery- and leadless pacemakers would combine the advantages of both approaches and overcome major limitations of today’s systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy harvesting devices are widely discussed as an alternative power source for todays active implantable medical devices. Repeated battery replacement procedures can be avoided by extending the implants life span, which is the goal of energy harvesting concepts. This reduces the risk of complications for the patient and may even reduce device size. The continuous and powerful contractions of a human heart ideally qualify as a battery substitute. In particular, devices in close proximity to the heart such as pacemakers, defibrillators or bio signal (ECG) recorders would benefit from this alternative energy source. The clockwork of an automatic wristwatch was used to transform the hearts kinetic energy into electrical energy. In order to qualify as a continuous energy supply for the consuming device, the mechanism needs to demonstrate its harvesting capability under various conditions. Several in-vivo recorded heart motions were used as input of a mathematical model to optimize the clockworks original conversion efficiency with respect to myocardial contractions. The resulting design was implemented and tested during in-vitro and in-vivo experiments, which demonstrated the superior sensitivity of the new design for all tested heart motions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two polycrystalline diamond surfaces, manufactured by chemical vapour deposition (CVD) technique, are investigated regarding their applicability as charge state conversion surfaces (CS) for use in a low energy neutral atom imaging instrument in space research. The capability of the surfaces for converting neutral atoms into negative ions via surface ionisation processes was measured for hydrogen and oxygen with particle energies in the range from 100 eV to 1 keV and for angles of incidence between 6 deg and 15 deg. We observed surface charging during the surface ionisation processes for one of the CVD samples due to low electrical conductivity of the material. Measurements on the other CVD diamond sample resulted in ionisation efficiencies of ~2 % for H and up to 12 % for O. Analysis of the angular scattering revealed very narrow and almost circular scattering distributions. Comparison of the results with the data of the CS of the IBEX-Lo sensor shows that CVD diamond has great potential as CS material for future space missions.