14 resultados para Electrical double layer
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Clay mineral-rich sedimentary formations are currently under investigation to evaluate their potential use as host formations for installation of deep underground disposal facilities for radioactive waste (e.g. Boom Clay (BE), Opalinus Clay (CH), Callovo-Oxfordian argillite (FR)). The ultimate safety of the corresponding repository concepts depends largely on the capacity of the host formation to limit the flux towards the biosphere of radionuclides (RN) contained in the waste to acceptably low levels. Data for diffusion-driven transfer in these formations shows extreme differences in the measured or modelled behaviour for various radionuclides, e. g. between halogen RN (Cl-36, I-129) and actinides (U-238,U-235, Np-237, Th-232, etc.), which result from major differences between RN of the effects on transport of two phenomena: diffusion and sorption. This paper describes recent research aimed at improving understanding of these two phenomena, focusing on the results of studies carried out during the EC Funmig IP on clayrocks from the above three formations and from the Boda formation (HU). Project results regarding phenomena governing water, cation and anion distribution and mobility in the pore volumes influenced by the negatively-charged surfaces of clay minerals show a convergence of the modelling results for behaviour at the molecular scale and descriptions based on electrical double layer models. Transport models exist which couple ion distribution relative to the clay-solution interface and differentiated diffusive characteristics. These codes are able to reproduce the main trends in behaviour observed experimentally, e.g. D-e(anion) < D-e(HTO) < D-e(cation) and D-e(anion) variations as a function of ionic strength and material density. These trends are also well-explained by models of transport through ideal porous matrices made up of a charged surface material. Experimental validation of these models is good as regards monovalent alkaline cations, in progress for divalent electrostatically-interacting cations (e.g. Sr2+) and still relatively poor for 'strongly sorbing', high K-d cations. Funmig results have clarified understanding of how clayrock mineral composition, and the corresponding organisation of mineral grain assemblages and their associated porosity, can affect mobile solute (anions, HTO) diffusion at different scales (mm to geological formation). In particular, advances made in the capacity to map clayrock mineral grain-porosity organisation at high resolution provide additional elements for understanding diffusion anisotropy and for relating diffusion characteristics measured at different scales. On the other hand, the results of studies focusing on evaluating the potential effects of heterogeneity on mobile species diffusion at the formation scale tend to show that there is a minimal effect when compared to a homogeneous property model. Finally, the results of a natural tracer-based study carried out on the Opalinus Clay formation increase confidence in the use of diffusion parameters measured on laboratory scale samples for predicting diffusion over geological time-space scales. Much effort was placed on improving understanding of coupled sorption-diffusion phenomena for sorbing cations in clayrocks. Results regarding sorption equilibrium in dispersed and compacted materials for weakly to moderately sorbing cations (Sr2+, Cs+, Co2+) tend to show that the same sorption model probably holds in both systems. It was not possible to demonstrate this for highly sorbing elements such as Eu(III) because of the extremely long times needed to reach equilibrium conditions, but there does not seem to be any clear reason why such elements should not have similar behaviour. Diffusion experiments carried out with Sr2+, Cs+ and Eu(III) on all of the clayrocks gave mixed results and tend to show that coupled diffusion-sorption migration is much more complex than expected, leading generally to greater mobility than that predicted by coupling a batch-determined K-d and Ficks law based on the diffusion behaviour of HTO. If the K-d measured on equivalent dispersed systems holds as was shown to be the case for Sr, Cs (and probably Co) for Opalinus Clay, these results indicate that these cations have a D-e value higher than HTO (up to a factor of 10 for Cs+). Results are as yet very limited for very moderate to strongly sorbing species (e.g. Co(II), Eu(III), Cu(II)) because of their very slow transfer characteristics. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Recently, sub-wavelength-pitch stacked double-gate metal nanotip arrays have been proposed to realize high current, high brightness electron bunches for ultrabright cathodes for x-ray free-electron laser applications. With the proposed device structure, ultrafast field emission of photoexcited electrons is efficiently driven by vertical incident near infrared laser pulses, via near field coupling of the surface plasmon polariton resonance of the gate electrodes with the nanotip apex. In this work, in order to gain insight in the underlying physical processes, the authors report detailed numerical studies of the proposed device. The results indicate the importance of the interaction of the double-layer surface plasmon polariton, the position of the nanotip, as well as the incident angle of the near infrared laser pulses.
Resumo:
We studied charge transport through core-substituted naphthalenediimide (NDI) single-molecule junctions using the electrochemical STM-based break-junction technique in combination with DFT calculations. Conductance switching among three well-defined states was demonstrated by electrochemically controlling the redox state of the pendent diimide unit of the molecule in an ionic liquid. The electrical conductances of the dianion and neutral states differ by more than one order of magnitude. The potential-dependence of the charge-transport characteristics of the NDI molecules was confirmed by DFT calculations, which account for electrochemical double-layer effects on the conductance of the NDI junctions. This study suggests that integration of a pendant redox unit with strong coupling to a molecular backbone enables the tuning of charge transport through single-molecule devices by controlling their redox states.
Resumo:
We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1x1) electrode and covered by Au(60 nm)@SlO(2) core shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+),V(+center dot) and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of similar to 3 x 10(5), and up to 9 x 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)- catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces.
Resumo:
Velopharyngeal insufficiency in cleft patients with muscular insufficiency detected by nasendoscopy is commonly treated by secondary radical intravelar veloplasty, in which the palatal muscles are reoriented and positioned backwards. The dead space between the retro-displaced musculature and the posterior borders of the palatal bone remains problematic. Postoperatively, the surgically achieved lengthening of the soft palate often diminishes due to scar tissue formation in the dead space, leading to reattachment of the reoriented muscles to the palatal bone and to decreased mobility of the soft palate. To avoid this, the dead space should be restored by a structure imitating the function of the missing palatal aponeurosis. The entire dead space was covered using a double layer of autogenous fascia lata harvested from the lateral thigh, which should allow sufficient and permanent sliding of the retro-positioned musculature. A clinical case of a 9-year-old boy who underwent the operation is reported. Postoperatively, marked functional improvements were observable in speech assessment, nasendoscopy and nasometry. The case reported here suggests that the restoration of the dead space may be beneficial for effective secondary palatal repair. Fascia lata seems to be a suitable graft for this purpose.
Resumo:
We carried out a comprehensive study of Au(1 1 1) oxidation–reduction in the presence of (hydrogen-) sulfate ions on ideally smooth and stepped Au(S)[n(1 1 1)-(1 1 1)] single crystal electrodes using cyclic voltammetry, in situ scanning tunneling microscopy (STM) and vibration spectroscopy, such as surface-enhanced infrared absorption spectroscopy (SEIRAS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Surface structure changes and the role of surface defects in the potential regions of double layer charging and gold oxidation/reduction are discussed based on cyclic voltammetry and in situ STM data. SEIRAS and SHINERS provide complementary information on the chemical nature of adsorbates. In particular, the potential-dependent formation and stability ranges of adsorbed sulfate, hydroxide-species and of gold surface oxide could be resolved in detail. Based on our experimental observations, we proposed new and extended mechanisms of gold surface oxidation and reduction in 1.0 M H2SO4 and 1.0 M Na2SO4.
Resumo:
PURPOSE The purpose of this study was to identify SD-OCT changes that correspond to leakage on fluorescein (FA) and indocyanine angiography (ICGA) and evaluate effect of half-fluence photodynamic therapy (PDT) on choroidal volume in chronic central serous choroidoretinopathy (CSC). METHODS Retrospective analysis of patients with chronic CSC who had undergone PDT. Baseline FA and ICGA images were overlaid on SD-OCT to identify OCT correlates of FA or ICGA hyperfluorescence. Choroidal volume was evaluated in a subgroup of eyes before and after PDT. RESULTS Twenty eyes were evaluated at baseline, of which seven eyes had choroidal volume evaluations at baseline and 3 months following PDT. SD-OCT changes corresponding to FA hyperfluorescence were subretinal fluid (73%), RPE microrip (50%), RPE double-layer sign (31%), RPE detachment (15%), and RPE thickening (8%). ICGA hyperfluoresence was correlated in 93% with hyperreflective spots in the superficial choroid. Choroidal volume decreased from 9.35 ± 1.99 to 8.52 ± 1.92 and 8.04 ± 1.7 mm(3) (at 1 and 3 months post PDT, respectively, p ≤ 0.001). CONCLUSIONS We identified specific OCT findings that correlate with FA and ICGA leakage sites. SD-OCT is a valuable tool to localize CSC lesions and may be useful to guide PDT treatment. Generalized choroidal volume decrease occurs following PDT and extends beyond PDT treatment site.
Resumo:
The rat double-SAH model is one of the standard models to simulate delayed cerebral vasospasm (CVS) in humans. However, the proof of delayed ischemic brain damage is missing so far. Our objective was, therefore, to determine histological changes in correlation with the development of symptomatic and perfusion weighted imaging (PWI) proven CVS in this animal model. CVS was induced by injection of autologous blood in the cisterna magna of 22 Sprague-Dawley rats. Histological changes were analyzed on day 3 and day 5. Cerebral blood flow (CBF) was assessed by PWI at 3 tesla magnetic resonance (MR) tomography. Neuronal cell count did not differ between sham operated and SAH rats in the hippocampus and the cerebral cortex on day 3. In contrast, on day 5 after SAH the neuronal cell count was significantly reduced in the hippocampus (p<0.001) and the inner cortical layer (p=0.03). The present investigation provides quantitative data on brain tissue damage in association with delayed CVS for the first time in a rat SAH model. Accordingly, our data suggest that the rat double-SAH model may be suitable to mimic delayed ischemic brain damage due to CVS and to investigate the neuroprotective effects of drugs.
Resumo:
Basal dendrites receive the majority of synapses that contact neocortical pyramidal neurons, yet our knowledge of synaptic processing in these dendrites has been hampered by their inaccessibility for electrical recordings. A new approach to patch-clamp recordings enabled us to characterize the integrative properties of these cells. Despite the short physical length of rat basal dendrites, synaptic inputs were electrotonically remote from the soma (>30-fold excitatory postsynaptic potential (EPSP) attenuation) and back-propagating action potentials were significantly attenuated. Unitary EPSPs were location dependent, reaching large amplitudes distally (>8 mV), yet their somatic contribution was relatively location independent. Basal dendrites support sodium and NMDA spikes, but not calcium spikes, for 75% of their length. This suggests that basal dendrites, despite their proximity to the site of action potential initiation, do not form a single basal-somatic region but rather should be considered as a separate integrative compartment favoring two integration modes: subthreshold, location-independent summation versus local amplification of incoming spatiotemporally clustered information.
Resumo:
Layer 2/3 (L2/3) pyramidal neurons are the most abundant cells of the neocortex. Despite their key position in the cortical microcircuit, synaptic integration in dendrites of L2/3 neurons is far less understood than in L5 pyramidal cell dendrites, mainly because of the difficulties in obtaining electrical recordings from thin dendrites. Here we directly measured passive and active properties of the apical dendrites of L2/3 neurons in rat brain slices using dual dendritic-somatic patch-clamp recordings and calcium imaging. Unlike L5 cells, L2/3 dendrites displayed little sag in response to long current pulses, which suggests a low density of I(h) in the dendrites and soma. This was also consistent with a slight increase in input resistance with distance from the soma. Brief current injections into the apical dendrite evoked relatively short (half-width 2-4 ms) dendritic spikes that were isolated from the soma for near-threshold currents at sites beyond the middle of the apical dendrite. Regenerative dendritic potentials and large concomitant calcium transients were also elicited by trains of somatic action potentials (APs) above a critical frequency (130 Hz), which was slightly higher than in L5 neurons. Initiation of dendritic spikes was facilitated by backpropagating somatic APs and could cause an additional AP at the soma. As in L5 neurons, we found that distal dendritic calcium transients are sensitive to a long-lasting block by GABAergic inhibition. We conclude that L2/3 pyramidal neurons can generate dendritic spikes, sharing with L5 pyramidal neurons fundamental properties of dendritic excitability and control by inhibition.
Resumo:
MATERNO-FETAL NUTRIENT TRANSFER ACROSS PRIMARY HUMAN TROPHOBLAST MONOLAYER Objectives: Polarized trophoblasts represent the transport and metabolic barrier between the maternal and fetal circulation. Currently human placental nutrient transfer in vitro is mainly investigated unidirectionallyon cultured primary trophoblasts, or bidirectionally on the Transwell® system using BeWo cells treated with forskolin. As forskolin can induce various gene alterations (e.g. cAMP response element genes), we aimed to establish a physiological primary trophoblast model for materno-fetal nutrient exchange studies without forskolin application. Methods: Human term cytotrophoblasts were isolated by enzymatic digestion and Percoll® gradient separation. The purity of the primary cells was assessed by flow cytometry using the trophoblast-specific marker cytokeratin-7. After screening different coating matrices, we optimized the growth conditions for the primary cytotrophoblasts on Transwell/ inserts. The morphology of 5 days cultured trophoblasts was determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally transport studies were performed on the polarized trophoblasts in the Transwell® system. Results: During 5 days culture, the trophoblasts (>90% purity) developed a modest trans-epithelial electrical resistance (TEER) and a sizedependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ~400-70’000D). SEM analyses confirmed a confluent trophoblast layer with numerous microvilli at day six, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein ZO-1, and the membrane proteins ABCA1 and Na+/K+-ATPase. Vectorial glucose and cholesterol transport studies confirmed functionality of the cultured trophoblast barrier. Conclusion: Evidence from cell morphology, biophysical parameters and cell marker expressions indicate the successful and reproducible establishment of a primary trophoblast monolayer model suitable for transport studies. Application of this model to pathological trophoblasts will help to better understand the mechanism underlying gestational diseases, and to define the consequences of placental pathology on materno-fetal nutrient transport.
Resumo:
INTRODUCTION Optic neuritis leads to degeneration of retinal ganglion cells whose axons form the optic nerve. The standard treatment is a methylprednisolone pulse therapy. This treatment slightly shortens the time of recovery but does not prevent neurodegeneration and persistent visual impairment. In a phase II trial performed in preparation of this study, we have shown that erythropoietin protects global retinal nerve fibre layer thickness (RNFLT-G) in acute optic neuritis; however, the preparatory trial was not powered to show effects on visual function. METHODS AND ANALYSIS Treatment of Optic Neuritis with Erythropoietin (TONE) is a national, randomised, double-blind, placebo-controlled, multicentre trial with two parallel arms. The primary objective is to determine the efficacy of erythropoietin compared to placebo given add-on to methylprednisolone as assessed by measurements of RNFLT-G and low-contrast visual acuity in the affected eye 6 months after randomisation. Inclusion criteria are a first episode of optic neuritis with decreased visual acuity to ≤0.5 (decimal system) and an onset of symptoms within 10 days prior to inclusion. The most important exclusion criteria are history of optic neuritis or multiple sclerosis or any ocular disease (affected or non-affected eye), significant hyperopia, myopia or astigmatism, elevated blood pressure, thrombotic events or malignancy. After randomisation, patients either receive 33 000 international units human recombinant erythropoietin intravenously for 3 consecutive days or placebo (0.9% saline) administered intravenously. With an estimated power of 80%, the calculated sample size is 100 patients. The trial started in September 2014 with a planned recruitment period of 30 months. ETHICS AND DISSEMINATION TONE has been approved by the Central Ethics Commission in Freiburg (194/14) and the German Federal Institute for Drugs and Medical Devices (61-3910-4039831). It complies with the Declaration of Helsinki, local laws and ICH-GCP. TRIAL REGISTRATION NUMBER NCT01962571.