64 resultados para Elastic static modulus
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.
Resumo:
OBJECTIVE: To examine the Young's modulus of the human amniotic membranes, as well as its relationship to gestational age. To determine whether cellular and material-related parameters affect this modulus. STUDY DESIGN: In a prospective study at the Obstetric outpatient clinic of the University Hospital Zurich Young's modulus, thickness and mesenchymal:epithelial cell ratio of amniotic membranes of preterm (N=23) and term (N=40) placentae were examined. Significance (P<0.05) was calculated with the Mann-Whitney two-sample rank sum test and Wilcoxon signed rank test, while correlations were made using the Spearman's correlation. RESULTS: The Young's modulus of preterm amniotic membranes was significantly higher than that of term membranes. It varied within the same amniotic membrane. The thickness of the amnion in both preterm and term membranes did not differ significantly. The thinner the preterm and term amniotic membranes, the higher the Young's modulus was. There was no relation to the mesenchymal:epithelial cell ratio in the amnion. CONCLUSIONS: Preterm amniotic membranes are stiffer than term amniotic membranes. Tentatively, we hypothesise that there may be a correlation between the extracellular matrix components and the elastic properties of the membrane.
Resumo:
Hydrodynamics can be consistently formulated on surfaces of arbitrary co-dimension in a background space-time, providing the effective theory describing long-wavelength perturbations of black branes. When the co-dimension is non-zero, the system acquires fluid-elastic properties and constitutes what is called a fluid brane. Applying an effective action approach, the most general form of the free energy quadratic in the extrinsic curvature and extrinsic twist potential of stationary fluid brane configurations is constructed to second order in a derivative expansion. This construction generalizes the Helfrich-Canham bending energy for fluid membranes studied in theoretical biology to the case in which the fluid is rotating. It is found that stationary fluid brane configurations are characterized by a set of 3 elastic response coefficients, 3 hydrodynamic response coefficients and 1 spin response coefficient for co-dimension greater than one. Moreover, the elastic degrees of freedom present in the system are coupled to the hydrodynamic degrees of freedom. For co-dimension-1 surfaces we find a 8 independent parameter family of stationary fluid branes. It is further shown that elastic and spin corrections to (non)-extremal brane effective actions can be accounted for by a multipole expansion of the stress-energy tensor, therefore establishing a relation between the different formalisms of Carter, Capovilla-Guven and Vasilic-Vojinovic and between gravity and the effective description of stationary fluid branes. Finally, it is shown that the Young modulus found in the literature for black branes falls into the class predicted by this approach - a relation which is then used to make a proposal for the second order effective action of stationary blackfolds and to find the corrected horizon angular velocity of thin black rings.
Resumo:
A new overground body-weight support system called ZeroG has been developed that allows patients with severe gait impairments to practice gait and balance activities in a safe, controlled manner. The unloading system is capable of providing up to 300 lb of static support and 150 lb of dynamic (or constant force) support using a custom-series elastic actuator. The unloading system is mounted to a driven trolley, which rides along an overhead rail. We evaluated the performance of ZeroG's unloading system, as well as the trolley tracking system, using benchtop and human-subject testing. Average root-mean-square and peak errors in unloading were 2.2 and 7.2 percent, respectively, over the range of forces tested while trolley tracking errors were less than 3 degrees, indicating the system was able to maintain its position above the subject. We believe training with ZeroG will allow patients to practice activities that are critical to achieving functional independence at home and in the community.
Resumo:
Monte Carlo (MC) based dose calculations can compute dose distributions with an accuracy surpassing that of conventional algorithms used in radiotherapy, especially in regions of tissue inhomogeneities and surface discontinuities. The Swiss Monte Carlo Plan (SMCP) is a GUI-based framework for photon MC treatment planning (MCTP) interfaced to the Eclipse treatment planning system (TPS). As for any dose calculation algorithm, also the MCTP needs to be commissioned and validated before using the algorithm for clinical cases. Aim of this study is the investigation of a 6 MV beam for clinical situations within the framework of the SMCP. In this respect, all parts i.e. open fields and all the clinically available beam modifiers have to be configured so that the calculated dose distributions match the corresponding measurements. Dose distributions for the 6 MV beam were simulated in a water phantom using a phase space source above the beam modifiers. The VMC++ code was used for the radiation transport through the beam modifiers (jaws, wedges, block and multileaf collimator (MLC)) as well as for the calculation of the dose distributions within the phantom. The voxel size of the dose distributions was 2mm in all directions. The statistical uncertainty of the calculated dose distributions was below 0.4%. Simulated depth dose curves and dose profiles in terms of [Gy/MU] for static and dynamic fields were compared with the corresponding measurements using dose difference and γ analysis. For the dose difference criterion of ±1% of D(max) and the distance to agreement criterion of ±1 mm, the γ analysis showed an excellent agreement between measurements and simulations for all static open and MLC fields. The tuning of the density and the thickness for all hard wedges lead to an agreement with the corresponding measurements within 1% or 1mm. Similar results have been achieved for the block. For the validation of the tuned hard wedges, a very good agreement between calculated and measured dose distributions was achieved using a 1%/1mm criteria for the γ analysis. The calculated dose distributions of the enhanced dynamic wedges (10°, 15°, 20°, 25°, 30°, 45° and 60°) met the criteria of 1%/1mm when compared with the measurements for all situations considered. For the IMRT fields all compared measured dose values agreed with the calculated dose values within a 2% dose difference or within 1 mm distance. The SMCP has been successfully validated for a static and dynamic 6 MV photon beam, thus resulting in accurate dose calculations suitable for applications in clinical cases.
Resumo:
SUMMARY The aim of this study was to evaluate the influence of surface roughness on surface hardness (Vickers; VHN), elastic modulus (EM), and flexural strength (FLS) of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. One hundred sixty-two samples of VITABLOCS Mark II (VMII) and 162 samples of IPS Empress CAD (IPS) were ground according to six standardized protocols producing decreasing surface roughnesses (n=27/group): grinding with 1) silicon carbide (SiC) paper #80, 2) SiC paper #120, 3) SiC paper #220, 4) SiC paper #320, 5) SiC paper #500, and 6) SiC paper #1000. Surface roughness (Ra/Rz) was measured with a surface roughness meter, VHN and EM with a hardness indentation device, and FLS with a three-point bending test. To test for a correlation between surface roughness (Ra/Rz) and VHN, EM, or FLS, Spearman rank correlation coefficients were calculated. The decrease in surface roughness led to an increase in VHN from (VMII/IPS; medians) 263.7/256.5 VHN to 646.8/601.5 VHN, an increase in EM from 45.4/41.0 GPa to 66.8/58.4 GPa, and an increase in FLS from 49.5/44.3 MPa to 73.0/97.2 MPa. For both ceramic materials, Spearman rank correlation coefficients showed a strong negative correlation between surface roughness (Ra/Rz) and VHN or EM and a moderate negative correlation between Ra/Rz and FLS. In conclusion, a decrease in surface roughness generally improved the mechanical properties of the CAD/CAM ceramic materials tested. However, FLS was less influenced by surface roughness than expected.
Resumo:
For the development of meniscal substitutes and related finite element models it is necessary to know the mechanical properties of the meniscus and its attachments. Measurement errors can falsify the determination of material properties. Therefore the impact of metrological and geometrical measurement errors on the determination of the linear modulus of human meniscal attachments was investigated. After total differentiation the error of the force (+0.10%), attachment deformation (−0.16%), and fibre length (+0.11%) measurements almost annulled each other. The error of the cross-sectional area determination ranged from 0.00%, gathered from histological slides, up to 14.22%, obtained from digital calliper measurements. Hence, total measurement error ranged from +0.05% to −14.17%, predominantly affected by the cross-sectional area determination error. Further investigations revealed that the entire cross-section was significantly larger compared to the load-carrying collagen fibre area. This overestimation of the cross-section area led to an underestimation of the linear modulus of up to −36.7%. Additionally, the cross-sections of the collagen-fibre area of the attachments significantly varied up to +90% along their longitudinal axis. The resultant ratio between the collagen fibre area and the histologically determined cross-sectional area ranged between 0.61 for the posterolateral and 0.69 for the posteromedial ligament. The linear modulus of human meniscal attachments can be significantly underestimated due to the use of different methods and locations of cross-sectional area determination. Hence, it is suggested to assess the load carrying collagen fibre area histologically, or, alternatively, to use the correction factors proposed in this study.
Resumo:
Vertebroplasty restores stiffness and strength of fractured vertebral bodies, but alters their stress transfer. This unwanted effect may be reduced by using more compliant cements. However, systematic experimental comparison of structural properties between standard and low-modulus augmentation needs to be done. This study investigated how standard and low-modulus cement augmentation affects apparent stiffness, strength, and endplate pressure distribution of vertebral body sections.