9 resultados para Egg-production
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Keel fractures in the laying hen are the most critical animal welfare issue facing the egg production industry, particularly with the increased use of extensive systems in response to the 2012 EU directive banning conventional battery cages. The current study is aimed at assessing the effects of 2 omega-3 (n3) enhanced diets on bone health, production endpoints, and behavior in free-range laying hens. Data was collected from 2 experiments over 2 laying cycles, each of which compared a (n3) supplemented diet with a control diet. Experiment 1 employed a diet supplemented with a 60:40 fish oil-linseed mixture (n3:n6 to 1.35) compared with a control diet (n3:n6 to 0.11), whereas the n3 diet in Experiment 2 was supplemented with a 40:60 fish oil-linseed (n3:n6 to 0.77) compared to the control diet (n3:n6 to 0.11). The n3 enhanced diet of Experiment 1 had a higher n3:n6 ratio, and a greater proportion of n3 in the long chain (C20/22) form (0.41 LC:SC) than that of Experiment 2 (0.12 LC:SC). Although dietary treatment was successful in reducing the frequency of fractures by approximately 27% in Experiment 2, data from Experiment 1 indicated the diet actually induced a greater likelihood of fracture (odds ratio: 1.2) and had substantial production detriment. Reduced keel breakage during Experiment 2 could be related to changes in bone health as n3-supplemented birds demonstrated greater load at failure of the keel, and tibiae and humeri that were more flexible. These results support previous findings that n3-supplemented diets can reduce fracture likely by increasing bone strength, and that this can be achieved without detriment to production. However, our findings suggest diets with excessive quantities of n3, or very high levels of C20/22, may experience health and production detriments. Further research is needed to optimize the quantity and type of n3 in terms of bone health and production variables and investigate the potential associated mechanisms.
Resumo:
Several studies have shown a high prevalence of keel bone deformities in commercial laying hens. The aim of this project was to assess the effects of perch material, a vitamin D feed additive (25-hydroxyvitamin D(3); HyD, DSM Nutritional Products, Basel, Switzerland), and genetics on keel bone pathology. The study consisted of 2 experiments. In the first experiment, 4,000 Lohmann Selected Leghorn hens were raised in aviary systems until 18 wk of age. Two factors were investigated: perch material (plastic or rubber-coated metal) and feed (with and without HyD). Afterward, the hens were moved to a layer house with 8 pens with 2 aviary systems. Daily feed consumption, egg production, mortality, and feather condition were evaluated. Every 6 wk, the keel bones of 10 randomly selected birds per pen were palpated and scored. In the second experiment, 2,000 Lohmann Brown (LB) hens and 2,000 Lohmann Brown parent stock (LBPS) hens were raised in a manner identical to the first experiment. During the laying period, the hens were kept in 24 identical floor pens but equipped with different perch material (plastic or rubber-coated metal). The same variables were investigated as in the first experiment. No keel bone deformities were found during the rearing period in either experiment. During the laying period, deformities gradually appeared and reached a prevalence of 35% in the first experiment and 43.8% in the second experiment at the age of 65 and 62 wk, respectively. In the first experiment, neither HyD nor the aviary system had any significant effect on the prevalence of keel bone deformities. In the second experiment, LBPS had significantly fewer moderate and severe deformities than LB, and rubber-coated metal perches were associated with a higher prevalence of keel bone deformities compared with plastic perches. The LBPS laid more but smaller eggs than the LB. Again, HyD did not affect the prevalence of keel bone deformities. However, the significant effect of breed affiliation strongly indicates a sizeable genetic component that may provide a basis for targeted selection.
Resumo:
As a consequence of the deleterious effects of parasites on host fitness, hosts have evolved responses to minimize the negative impact of parasite infection. Facultative parasite-induced responses are favoured when the risk of infection is unpredictable and host responses are costly. In vertebrates, induced responses are generally viewed as being adaptive, although evidence for fitness benefits arising from these responses in natural host populations is lacking. Here we provide experimental evidence for direct reproductive benefits in flea-infested great tit nests arising from exposure during egg production to fleas. In the experiment we exposed a group of birds to fleas during egg laying (the exposed group), thereby allowing for induced responses, and kept another group free of parasites (the unexposed group) over the same time period. At the start of incubation, we killed the parasites in both groups and all nests were reinfested with fleas. If induced responses occur and are adaptive, we expect that birds of the exposed group mount earlier responses and achieve higher current reproductive success than birds in the unexposed group. In agreement with this prediction, our results show that birds with nests infested during egg-laying have (i) fewer breeding failures and raise a higher proportion of hatchlings to hedging age; () offspring that reach greater body mass, grow longer feathers, and hedge earlier, and (iii) a higher number of recruits and first-year grandchildren than unexposed birds. Flea reproduction and survival did not differ significantly between the two treatments. These results provide the first evidence for the occurrence and the adaptiveness of induced responses against a common ectoparasite in a wild population of vertebrates. [References: 50]
Resumo:
Partial or full life-cycle tests are needed to assess the potential of endocrine-disrupting compounds (EDCs) to adversely affect development and reproduction of fish. Small fish species such as zebrafish, Danio rerio, are under consideration as model organisms for appropriate test protocols. The present study examines how reproductive effects resulting from exposure of zebrafish to the synthetic estrogen 17alpha-ethinylestradiol (EE2) vary with concentration (0.05 to 10 ng EE2 L(-1), nominal), and with timing/duration of exposure (partial life-cycle, full life-cycle, and two-generation exposure). Partial life-cycle exposure of the parental (F1) generation until completion of gonad differentiation (0-75 d postfertilization, dpf) impaired juvenile growth, time to sexual maturity, adult fecundity (egg production/female/day), and adult fertilization success at 1.1 ng EE2 L(-1) and higher. Lifelong exposure of the F1 generation until 177 dpf resulted in lowest observed effect concentrations (LOECs) for time to sexual maturity, fecundity, and fertilization success identical to those of the developmental test (0-75 dpf), but the slope of the concentration-response curve was steeper. Reproduction of zebrafish was completely inhibited at 9.3 ng EE2 L(-1), and this was essentially irreversible as a 3-mo depuration restored fertilization success to only a very low rate. Accordingly, elevated endogenous vitellogenin (VTG) synthesis and degenerative changes in gonad morphology persisted in depurated zebrafish. Full life-cycle exposure of the filial (F2) generation until 162 dpf impaired growth, delayed onset of spawning and reduced fecundity and fertilization success at 2.0 ng EE2 L(-1). In conclusion, results show that the impact of estrogenic agents on zebrafish sexual development and reproductive functions as well as the reversibility of effects, varies with exposure concentration (reversibility at < or = 1.1 ng EE2 L(-1) and irreversibility at 9.3 ng EE2 L(-1)), and between partial and full life-cycle exposure (exposure to 10 ng EE2 L(-1) during critical period exerted no permanent effect on sexual differentiation, but life-cycle exposure did).
Resumo:
Anti-helminth immunity involves CD4+ T cells, yet the precise effector mechanisms responsible for parasite killing or expulsion remain elusive. We now report an essential role for antibodies in mediating immunity against the enteric helminth Heligmosomoides polygyrus (Hp), a natural murine parasite that establishes chronic infection. Polyclonal IgG antibodies, present in naive mice and produced following Hp infection, functioned to limit egg production by adult parasites. Comparatively, affinity-matured parasite-specific IgG and IgA antibodies that developed only after multiple infections were required to prevent adult worm development. These data reveal complementary roles for polyclonal and affinity-matured parasite-specific antibodies in preventing enteric helminth infection by limiting parasite fecundity and providing immune protection against reinfection, respectively. We propose that parasite-induced polyclonal antibodies play a dual role, whereby the parasite is allowed to establish chronicity, while parasite load and spread are limited, likely reflecting the long coevolution of helminth parasites with their hosts.
Resumo:
In studies assessing outdoor range use of laying hens, the number of hens seen on outdoor ranges is inversely correlated to flock size. The aim of this study was to assess individual ranging behavior on a covered (veranda) and an uncovered outdoor run (free-range) in laying hen flocks varying in size. Five to ten percent of hens (aged 9–15 months) within 4 small (2–2500 hens), 4 medium (5–6000), and 4 large (≥9000) commercial flocks were fitted with radio frequency identification (RFID) tags. Antennas were placed at both sides of all popholes between the house and the veranda and the veranda and the free-range. Ranging behavior was directly monitored for approximately three weeks in combination with hourly photographs of the free-range for the distribution of hens and 6h long video recordings on two parts of the free-range during two days. Between 79 and 99% of the tagged hens were registered on the veranda at least once and between 47 and 90% were registered on the free-range at least once. There was no association between the percentage of hens registered outside the house (veranda or free-range) and flock size. However, individual hens in small and medium sized flocks visited the areas outside the house more frequently and spent more time there than hens from large flocks. Foraging behavior on the free-range was shown more frequently and for a longer duration by hens from small and medium sized flocks than by hens from large flocks. This difference in ranging behavior could account for the negative relationship between flock size and the number of hens seen outside at one point of time. In conclusion, our work describes individual birds’ use of areas outside the house within large scale commercial egg production.
Resumo:
Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis of horses caused by bites of Culicoides spp. IBH does not occur in Iceland where Culicoides are absent. However, following importation into continental Europe where Culicoides are present, >or=50% of Icelandic horses (1st generation) develop IBH but
Resumo:
The experiment was designed to investigate the impact of selection for increased body mass on external and internal egg quality traits of Japanese quail. Three hundred and sixty Japanese quail, divergently selected over three generations for different body mass at 4 weeks of age, were used. Quail were homogeneously divided into three groups each consisting of 120 birds: high body mass (HBM), low body mass (LBM) and Control. ANOVA was used to detect the effect of selection on egg quality. In addition, correlation between external and internal egg quality traits was measured. Our results revealed thatHBMquail laid heavier eggs (P = 0.03 compared with LBM but not significantly different with Control quail) with a higher external (shell thickness, shell weight, eggshell ratio and eggshell density, P = 0.0001) and internal egg quality score (albumen weight, P = 0.003; albumen ratio, P = 0.01; albumen height, yolk height, yolk index and Haugh unit, P = 0.0001) when compared with both the Control and LBM. The egg surface area and yolk diameter were significantly higher in HBM when compared with the LBM but not with the Control line. Egg weight was positively correlated with albumen weight (r = 0.54, P = 0.0001), albumen ratio (r = 0.14, P = 0.05), yolk height (r = 0.27, P = 0.0001), yolk weight (r = 0.23, P = 0.002), yolk diameter (r = 0.14, P = 0.05) and yolk index (r = 0.21, P = 0.005) but was negatively correlated with yolk ratio (r = –0.16, P = 0.03). Our results indicate that selection for higher body mass might result in heavier eggs and superior egg quality.
Resumo:
The prevalence of keel bone damage as well as external egg parameters of 2 pure lines divergently selected for high (H) and low (L) bone strength were investigated in 2 aviary systems under commercial conditions. A standard LSL hybrid was used as a reference group. Birds were kept mixed per genetic line (77 hens of the H and L line and 201 or 206 hens of the LSL line, respectively, per pen) in 8 pens of 2 aviary systems differing in design. Keel bone status and body mass of 20 focal hens per line and pen were assessed at 17, 18, 23, 30, 36, 43, 52, and 63 wk of age. External egg parameters (i.e., egg mass, eggshell breaking strength, thickness, and mass) were measured using 10 eggs per line at both 38 and 57 wk of age. Body parameters (i.e. tarsus and third primary wing feather length to calculate index of wing loading) were recorded at 38 wk of age and mortality per genetic line throughout the laying cycle. Bone mineral density (BMD) of 15 keel bones per genetic line was measured after slaughter to confirm assignment of the experimental lines. We found a greater BMD in the H compared with the L and LSL lines. Fewer keel bone fractures and deviations, a poorer external egg quality, as well as a lower index of wing loading were found in the H compared with the L line. Mortality was lower and production parameters (e.g., laying performance) were higher in the LSL line compared with the 2 experimental lines. Aviary design affected prevalence of keel bone damage, body mass, and mortality. We conclude that selection of specific bone traits associated with bone strength as well as the related differences in body morphology (i.e., lower index of wing loading) have potential to reduce keel bone damage in commercial settings. Also, the housing environment (i.e., aviary design) may have additive effects.