3 resultados para Effects Of Ultraviolet Radiation On Skin

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbeam radiation therapy (MRT) is a new form of preclinical radiotherapy using quasi-parallel arrays of synchrotron X-ray microbeams. While the deposition of several hundred Grays in the microbeam paths, the normal brain tissues presents a high tolerance which is accompanied by the permanence of apparently normal vessels. Conversely, the efficiency of MRT on tumor growth control is thought to be related to a preferential damaging of tumor blood vessels. The high resistance of the healthy vascular network was demonstrated in different animal models by in vivo biphoton microscopy, magnetic resonance imaging, and histological studies. While a transient increase in permeability was shown, the structure of the vessels remained intact. The use of a chick chorioallantoic membrane at different stages of development showed that the damages induced by microbeams depend on vessel maturation. In vivo and ultrastructural observations showed negligible effects of microbeams on the mature vasculature at late stages of development; nevertheless a complete destruction of the immature capillary plexus was found in the microbeam paths. The use of MRT in rodent models revealed a preferential effect on tumor vessels. Although no major modification was observed in the vasculature of normal brain tissue, tumors showed a denudation of capillaries accompanied by transient increased permeability followed by reduced tumor perfusion and finally, a decrease in number of tumor vessels. Thus, MRT is a very promising treatment strategy with pronounced tumor control effects most likely based on the anti-vascular effects of MRT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alveolar echinococcosis is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis. Current chemotherapeutical options for the treatment of echinococcosis are not satisfactory, and novel drugs and/or other potential means of therapy are needed. E. multilocularis metacestodes are characterized by almost potentially unlimited growth, and also display other features of cancerous tumours. In this study, we exposed metacestodes that were generated in vitro to 50-100 Gy ionizing irradiation, and subsequently investigated the short-term (10-12 days post-treatment) and long-term (14 weeks post-treatment) effects. We found, that in the short-term, no release of alkaline phosphatase (EmAP) activity as a measure for potentially induced damage and loss of viability could be detected, and that the protein expression pattern and protease activities in vesicle fluids and medium supernatants did not alter dramatically following irradiation. However, irradiation was associated with distinct morphological and ultrastructural alterations in the tissue of metacestodes, affecting most notably cell-cell contacts, mitochondrial shape, glycogen-storage cells and lipid droplet formation. These could be detected already at 10 days following treatment and remained as such also in the long-term. In addition, as determined after 14 weeks of culture, irradiation affected the proliferation and the growth of E. multilocularis metacestodes. Thus, we demonstrate that radiotherapy does not have a clear-cut parasitocidal effect, but can lead to metabolic impairment of E. multilocularis metacestodes, as reflected by the distinct morphological and structural alterations induced by irradiation treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To test the hypothesis that endovascular revascularization of femoropopliteal lesions improves the impaired venoarteriolar response (VAR) in patients with atherosclerosis. METHODS: We prospectively compared VARs in 15 healthy controls (18 legs) and 14 patients (17 legs) with mild to moderate peripheral arterial disease before and after successful peripheral endovascular angioplasty of femoropopliteal lesions. In all subjects, foot skin blood flow was assessed by laser Doppler flowmetry in the horizontal (HBF) and sitting (SBF) positions. VAR was calculated as (HBF - SBF)/HBF x 100. RESULTS: In patients with peripheral arterial disease, mean HBF (in arbitrary units [AU]; mean +/- SD) was similar before (25.6 +/- 15.3 AU) and after (27.0 +/- 16.4 AU) angioplasty (P = .67), whereas SBF was significantly lower after than before the endovascular procedure (11.6 +/- 7.7 AU to 18.4 +/- 14.1 AU; P < .05). Intragroup differences between SBF and HBF were significant before and after angioplasty (P < .001). VAR was higher after angioplasty (55.1% +/- 21.2%) compared with VAR before intervention (33.4% +/- 20.2%; P = .015). Although VAR increased after the intervention, VAR was still lower than in healthy controls (68.4% +/- 20.5%; P = .025). During the 6 months of follow-up, the ankle-brachial index and VAR remained unchanged (P > .05). CONCLUSIONS: Patients with mild to moderate peripheral arterial disease have an impaired orthostatic autoregulation that improves after successful endovascular revascularization of femoropopliteal obstructive lesions. The effect on VAR is sustained in the absence of restenosis.