11 resultados para Effect of gamma irradiation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of vitamin E on proliferation, integrin expression, adhesion, and migration in human glioma cells has been studied. gamma-tocopherol at 50 microM concentration exerted more inhibitory effect than alpha-tocopherol at the same concentration on glioma cell proliferation. Integrin alpha5 and beta1 protein levels were increased upon both alpha- and gamma-tocopherol treatments. In parallel, an increase in the alpha5beta1 heterodimer cell surface expression was observed. The tocopherols inhibited glioma cell-binding to fibronectin where gamma-tocopherol treatment induced glioma cell migration. Taken together, the data reported here are consistent with the notion that the inhibition of glioma cell proliferation induced by tocopherols may be mediated, at least in part, by an increase in integrin alpha5 and beta1 expression. Cell adhesion is also negatively affected by tocopherols, despite a small increase in the surface appearance of the alpha5beta1 heterodimer. Cell migration is stimulated by gamma-tocopherol. It is concluded that alpha5 and beta1 integrin expression and surface appearance are not sufficient to explain all the observations and that other integrins or in general other factors may be associated with these events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined collagen-soldering matrix membranes for special laser soldering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We herein present a patient undergoing selective internal radiation therapy with an almost normal lung shunt fraction of 11.5 %, developing histologically proven radiation pneumonitis. Due to a predominance of pulmonary consolidations in the right lower lung and its proximity to a large liver metastases located in the dome of the right liver lobe a Monte Carlo simulation was performed to estimate the effect of direct irradiation of the lung parenchyma. According to our calculations direct irradiation seems negligible and RP is almost exclusively due to ectopic draining of radioactive spheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In combined clinical optoacoustic (OA) and ultrasound (US) imaging, epi-mode irradiation and detection integrated into one single probe offers flexible imaging of the human body. The imaging depth in epi-illumination is, however, strongly affected by clutter. As shown in previous phantom experiments, the location of irradiation plays an important role in clutter generation. We investigated the influence of the irradiation geometry on the local image contrast of clinical images, by varying the separation distance between the irradiated area and the acoustic imaging plane of a linear ultrasound transducer in an automated scanning setup. The results for different volunteers show that the image contrast can be enhanced on average by 25% and locally by more than a factor of two, when the irradiated area is slightly separated from the probe. Our findings have an important impact on the design of future optoacoustic probes for clinical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective Impaired function of the central gamma-aminobutyric acid (GABA) system, which provides the brain’s major inhibitory pathways, is thought to play an important role in the pathophysiology of anxiety disorders. The effect of acute psychological stress on the human GABA-ergic system is still unknown, however. The purpose of this study was to determine the effect of acute stress on prefrontal GABA levels. Method A recently developed noninvasive magnetic resonance spectroscopy method was used to measure changes in the GABA concentration of the prefrontal cortex in 10 healthy human subjects during a threat-of-shock condition and during a safe condition (two sessions on different days). The main outcome measure was the mean GABA concentration within a 3×3×2-cm3 voxel selected from the medial prefrontal cortex. Results Prefrontal GABA decreased by approximately 18% in the threat-of-shock condition relative to the safe condition. This reduction was specific to GABA, since the concentrations of N-acetyl-aspartate, choline-containing compounds, and glutamate/glutamine levels obtained in the same spectra did not change significantly. Conclusions This result appeared compatible with evidence from preclinical studies in rodents, which showed rapid presynaptic down-regulation of GABA-ergic neurotransmission in response to acute psychological stress. The molecular mechanism and functional significance of this reduced inhibitory effect of acute psychological stress in relation to impaired GABA-ergic function in anxiety disorders merit further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To report a rare side effect of gamma knife treatment of pituitary macroadenoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beneficial effects by both interferon-beta and statin treatment in patients with multiple sclerosis (MS) may be linked to interference with the Th1/Th2 cytokine balance. We determined patterns of Th1/Th2 cytokines (interleukin (IL)-1beta, IL-2, IL-6, IL-12p70, tumor-necrosis factor (TNF)-alpha and interferon-gamma, and IL-4, IL-5 and IL-10, respectively) in the serum of patients with relapsing-remitting MS treated with 250microg interferon-beta 1b or with interferon-beta plus 40mg atorvastatin. In treatment naïve patients with MS, a trend for lower TNF-alpha serum levels compared to controls was detected (P=0.08). Interferon-beta treatment increased TNF-alpha levels, while a trend for lowering of IL-5 serum levels was found (P=0.07). Addition of atorvastatin raised IL-12p70 serum levels (P<0.05). Mean levels of two Th2 cytokines (IL-4, IL-10) showed a non-significant increase after addition of atorvastatin. We conclude that interferon-beta and atorvastatin exert divergent action on Th1/Th2 serum cytokines levels in MS. Supplemental atorvastatin might promote a Th1-type response by raising IL-12p70. Further studies are required to support a Th2 cytokine shift by atorvastatin in patients with MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gamma-radiation exposure of humans is a major public health concern as the threat of terrorism and potential hostile use of radiological devices increases worldwide. We report here the effects of sublethal gamma-radiation exposure on the mouse urinary metabolome determined using ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry-based metabolomics. Five urinary biomarkers of sublethal radiation exposure that were statistically significantly elevated during the first 24 h after exposure to doses ranging from 1 to 3 Gy were unequivocally identified by tandem mass spectrometry. These are deaminated purine and pyrimidine derivatives, namely, thymidine, 2'-deoxyuridine, 2'-deoxyxanthosine, xanthine and xanthosine. Furthermore, the aminopyrimidine 2'-deoxycytidine appeared to display reduced urinary excretion at 2 and 3 Gy. The elevated biomarkers displayed a time-dependent excretion, peaking in urine at 8-12 h but returning to baseline by 36 h after exposure. It is proposed that 2'-deoxyuridine and 2'-deoxyxanthosine arise as a result of gamma irradiation by nitrosative deamination of 2'-deoxycytidine and 2'-deoxyguanosine, respectively, and that this further leads to increased synthesis of thymidine, xanthine and xanthosine. The urinary excretion of deaminated purines and pyrimidines, at the expense of aminopurines and aminopyrimidines, appears to form the core of the urinary radiation metabolomic signature of mice exposed to sublethal doses of ionizing radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Radiation metabolomics employing mass spectral technologies represents a plausible means of high-throughput minimally invasive radiation biodosimetry. A simplified metabolomics protocol is described that employs ubiquitous gas chromatography-mass spectrometry and open source software including random forests machine learning algorithm to uncover latent biomarkers of 3 Gy gamma radiation in rats. Urine was collected from six male Wistar rats and six sham-irradiated controls for 7 days, 4 prior to irradiation and 3 after irradiation. Water and food consumption, urine volume, body weight, and sodium, potassium, calcium, chloride, phosphate and urea excretion showed major effects from exposure to gamma radiation. The metabolomics protocol uncovered several urinary metabolites that were significantly up-regulated (glyoxylate, threonate, thymine, uracil, p-cresol) and down-regulated (citrate, 2-oxoglutarate, adipate, pimelate, suberate, azelaate) as a result of radiation exposure. Thymine and uracil were shown to derive largely from thymidine and 2'-deoxyuridine, which are known radiation biomarkers in the mouse. The radiation metabolomic phenotype in rats appeared to derive from oxidative stress and effects on kidney function. Gas chromatography-mass spectrometry is a promising platform on which to develop the field of radiation metabolomics further and to assist in the design of instrumentation for use in detecting biological consequences of environmental radiation release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the effect of metal implants in proton radiotherapy, dose distributions of different, clinically relevant treatment plans have been measured in an anthropomorphic phantom and compared to treatment planning predictions. The anthropomorphic phantom, which is sliced into four segments in the cranio-caudal direction, is composed of tissue equivalent materials and contains a titanium implant in a vertebral body in the cervical region. GafChromic® films were laid between the different segments to measure the 2D delivered dose. Three different four-field plans have then been applied: a Single-Field-Uniform-Dose (SFUD) plan, both with and without artifact correction implemented, and an Intensity-Modulated-Proton-Therapy (IMPT) plan with the artifacts corrected. For corrections, the artifacts were manually outlined and the Hounsfield Units manually set to an average value for soft tissue. Results show a surprisingly good agreement between prescribed and delivered dose distributions when artifacts have been corrected, with > 97% and 98% of points fulfilling the gamma criterion of 3%/3 mm for both SFUD and the IMPT plans, respectively. In contrast, without artifact corrections, up to 18% of measured points fail the gamma criterion of 3%/3 mm for the SFUD plan. These measurements indicate that correcting manually for the reconstruction artifacts resulting from metal implants substantially improves the accuracy of the calculated dose distribution.