34 resultados para Eddy flux

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrous oxide fluxes were measured at the Lägeren CarboEurope IP flux site over the multi-species mixed forest dominated by European beech and Norway spruce. Measurements were carried out during a four-week period in October–November 2005 during leaf senescence. Fluxes were measured with a standard ultrasonic anemometer in combination with a quantum cascade laser absorption spectrometer that measured N2O, CO2, and H2O mixing ratios simultaneously at 5 Hz time resolution. To distinguish insignificant fluxes from significant ones it is proposed to use a new approach based on the significance of the correlation coefficient between vertical wind speed and mixing ratio fluctuations. This procedure eliminated roughly 56% of our half-hourly fluxes. Based on the remaining, quality checked N2O fluxes we quantified the mean efflux at 0.8±0.4 μmol m−2 h−1 (mean ± standard error). Most of the contribution to the N2O flux occurred during a 6.5-h period starting 4.5 h before each precipitation event. No relation with precipitation amount could be found. Visibility data representing fog density and duration at the site indicate that wetting of the canopy may have as strong an effect on N2O effluxes as does below-ground microbial activity. It is speculated that above-ground N2O production from the senescing leaves at high moisture (fog, drizzle, onset of precipitation event) may be responsible for part of the measured flux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term measurements of CO2 flux can be obtained using the eddy covariance technique, but these datasets are affected by gaps which hinder the estimation of robust long-term means and annual ecosystem exchanges. We compare results obtained using three gap-fill techniques: multiple regression (MR), multiple imputation (MI), and artificial neural networks (ANNs), applied to a one-year dataset of hourly CO2 flux measurements collected in Lutjewad, over a flat agriculture area near the Wadden Sea dike in the north of the Netherlands. The dataset was separated in two subsets: a learning and a validation set. The performances of gap-filling techniques were analysed by calculating statistical criteria: coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), and mean square bias (MSB). The gap-fill accuracy is seasonally dependent, with better results in cold seasons. The highest accuracy is obtained using ANN technique which is also less sensitive to environmental/seasonal conditions. We argue that filling gaps directly on measured CO2 fluxes is more advantageous than the common method of filling gaps on calculated net ecosystem change, because ANN is an empirical method and smaller scatter is expected when gap filling is applied directly to measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atmospheric westerly flow in the North Atlantic (NA) sector is dominated by atmospheric waves or eddies generating via momentum flux convergence, the so-called eddy-driven jet. The position of this jet is variable and shows for the present-day winter climate three preferred latitudinal states: a northern, central, and southernposition in the NA. Here, the authors analyze the behavior of the eddy-driven jet under different glacial and interglacial boundary conditions using atmosphere–land-only simulations with the CCSM4 climate model. As state-of-the-art climate models tend to underestimate the trimodality of the jet latitude, the authors apply a bias correction and successfully extract the trimodal behavior of the jet within CCSM4. The analysis shows that during interglacial times (i.e., the early Holocene and the Eemian) the preferred jet positions are rather stable and the observed multimodality is the typical interglacial character of the jet. During glacial times, the jet is strongly enhanced, its position is shifted southward, and the trimodal behavior vanishes. This is mainly due to the presence of the Laurentide ice sheet (LIS). The LIS enhances stationary waves downstream, thereby accelerating and displacing the NA eddy-driven jet by anomalous stationary momentum flux convergence. Additionally, changes in the transient eddy activity caused by topography changes as well as other glacial boundary conditions lead to an acceleration of the westerly winds over the southern NA at the expenseof more northernareas. Consequently, bothstationaryand transient eddiesfoster the southward shift of the NA eddy-driven jet during glacial winter times.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF), a common lethal inherited disorder defined by ion transport abnormalities, chronic infection, and robust inflammation, is the result of mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a cAMP-activated chloride (Cl-) channel. Macrophages are reported to have impaired activity in CF. Previous studies suggest that Cl- transport is important for macrophage function; therefore, impaired Cl- secretion may underlie CF macrophage dysfunction. To determine whether alterations in Cl- transport exist in CF macrophages, Cl- efflux was measured using N-[ethoxycarbonylmethyl]- 6-methoxy-quinolinium bromide (MQAE), a fluorescent indicator dye. The contribution of CFTR was assessed by calculating Cl- flux in the presence and absence of cftr(inh)-172. The contribution of calcium (Ca(2+))-modulated Cl- pathways was assessed by examining Cl- flux with varied extracellular Ca(2+) concentrations or after treatment with carbachol or thapsigargin, agents that increase intracellular Ca(2+) levels. Our data demonstrate that CFTR contributed to Cl- efflux only in WT macrophages, while Ca(2+)-mediated pathways contributed to Cl- transport in CF and WT macrophages. Furthermore, CF macrophages demonstrated augmented Cl- efflux with increases in extracellular Ca(2+). Taken together, this suggests that Ca(2+)-mediated Cl- pathways are enhanced in CF macrophages compared with WT macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of elementary vector is generalised to the case where the steady-state space of the metabolic network is not a flux cone but is a general polyhedron due to further inhomogeneous constraints on the flows through some of the reactions. On one hand, this allows to selectively enumerate elementary modes which satisfy certain optimality criteria and this can yield a large computational gain compared with full enumeration. On the other hand, in contrast to the single optimum found by executing a linear program, this enables a comprehensive description of the set of alternate optima often encountered in flux balance analysis. The concepts are illustrated on a metabolic network model of human cardiac mitochondria.