119 resultados para Ecology|Climate Change|Limnology

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alpine snowbeds are characterised by a very short growing season. However, the length of the snow-free period is increasingly prolonged due to climate change, so that snowbeds become susceptible to invasions from neighbouring alpine meadow communities. We hypothesised that spatial distribution of species generated by plant interactions may indicate whether snowbed species will coexist with or will be out-competed by invading alpine species – spatial aggregation or segregation will point to coexistence or competitive exclusion, respectively. We tested this hypothesis in snowbeds of the Swiss Alps using the variance ratio statistics. We focused on the relationships between dominant snowbed species, subordinate snowbed species, and potentially invading alpine grassland species. Subordinate snowbed species were generally spatially aggregated with each other, but were segregated from alpine grassland species. Competition between alpine grassland and subordinate snowbed species may have caused this segregation. Segregation between these species groups increased with earlier snowmelt, suggesting an increasing importance of competition with climate change. Further, a dominant snowbed species (Alchemilla pentaphyllea) was spatially aggregated with subordinate snowbed species, while two other dominants (Gnaphalium supinum and Salix herbacea) showed aggregated patterns with alpine grassland species. These dominant species are known to show distinct microhabitat preferences suggesting the existence of hidden microhabitats with different susceptibility to invaders. These results allow us to suggest that alpine snowbed areas are likely to be reduced as a consequence of climate change and that invading species from nearby alpine grasslands could outcompete subordinate snowbed species. On the other hand, microhabitats dominated by Gnaphalium or Salix seem to be particularly prone to invasions by non-snowbed species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is expected to have far-reaching negative effects on agricultural production and food security in developing and transition countries. What do we know about these expected impacts, what are the factors that might affect production, and what are the implications for agricultural extension systems?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Swiss Alps will experience pronounced effects of climate change due to the combination of their latitudinal positioning, altitude and unique ecosystems, placing socio-economic stresses on alpine communities, many of which rely on seasonal tourism. Studies into tourism adaptation within the Swiss Alps have so far focused on the technical adaptation options of alpine stakeholders, rather than perceptions of adaptation to climate change at the operational and community level. This article investigates attitudes to adaptation in two alpine regions within Switzerland's well-established decentralized political framework, through semi-structured qualitative interviews. Stakeholders focused almost entirely on maintaining the status quo of winter tourism, through technical or marketing measures, with mixed attitudes towards climatic impacts. A matrix based on the relative internal strengths and weaknesses, external opportunities and threats of adaptation measures (a SWOT framework) was used to assess the measures and suggest how stakeholders could capitalize on the new opportunities thrown up by climate change to create a competitive advantage. A comprehensive and collaborative planning approach is vital to enable policy makers and stakeholders to maximize opportunities, minimize the adverse effects of climate change on the local economy, and develop inclusive adaptation measures that benefit the entire region in order to create more sustainable social, economic and environmental structures.