47 resultados para Earth-Moon system

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Periodic comets move around the Sun on elliptical orbits. As such comet 67P/Churyumov-Gerasimenko (hereafter 67P) spends a portion of time in the inner solar system where it is exposed to increased solar insolation. Therefore given the change in heliocentric distance, in case of 67P from aphelion at 5.68 AU to perihelion at ~1.24 AU, the comet’s activity—the production of neutral gas and dust—undergoes significant variations. As a consequence, during the inbound portion, the mass loading of the solar wind increases and extends to larger spatial scales. This paper investigates how this interaction changes the character of the plasma environment of the comet by means of multifluid MHD simulations. The multifluid MHD model is capable of separating the dynamics of the solar wind ions and the pick-up ions created through photoionization and electron impact ionization in the coma of the comet. We show how two of the major boundaries, the bow shock and the diamagnetic cavity, form and develop as the comet moves through the inner solar system. Likewise for 67P, although most likely shifted back in time with respect to perihelion passage, this process is reversed on the outbound portion of the orbit. The presented model herein is able to reproduce some of the key features previously only accessible to particle-based models that take full account of the ions’ gyration. The results shown herein are in decent agreement to these hybrid-type kinetic simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Direct Simulation Monte Carlo (DSMC) is a powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow. However, the investigation of the parameter space in simulations can be time consuming since 3D DSMC is computationally highly intensive. For the target of ESA's Rosetta mission, comet 67P/Churyumov-Gerasimenko, we have identified to what extent modification of several parameters influence the 3D flow and gas temperature fields and have attempted to establish the reliability of inferences about the initial conditions from in situ and remote sensing measurements. A large number of DSMC runs have been completed with varying input parameters. In this work, we present the simulation results and conclude on the sensitivity of solutions to certain inputs. It is found that among cases of water outgassing, the surface production rate distribution is the most influential variable to the flow field.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the observations of energetic neutral atoms (ENAs) produced at the lunar surface in the Earth's magnetotail. When the Moon was located in the terrestrial plasma sheet, Chandrayaan-1 Energetic Neutrals Analyzer (CENA) detected hydrogen ENAs from the Moon. Analysis of the data from CENA together with the Solar Wind Monitor (SWIM) onboard Chandrayaan-1 reveals the characteristic energy of the observed ENA energy spectrum (the e-folding energy of the distribution function) ∼100 eV and the ENA backscattering ratio (defined as the ratio of upward ENA flux to downward proton flux) <∼0.1. These characteristics are similar to those of the backscattered ENAs in the solar wind, suggesting that CENA detected plasma sheet particles backscattered as ENAs from the lunar surface. The observed ENA backscattering ratio in the plasma sheet exhibits no significant difference in the Southern Hemisphere, where a large and strong magnetized region exists, compared with that in the Northern Hemisphere. This is contrary to the CENA observations in the solar wind, when the backscattering ratio drops by ∼50% in the Southern Hemisphere. Our analysis and test particle simulations suggest that magnetic shielding of the lunar surface in the plasma sheet is less effective than in the solar wind due to the broad velocity distributions of the plasma sheet protons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An  ∼ 1000-member ensemble of the Bern3D-LPJ carbon–climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As long as global CO₂ emissions continue to increase annually, long-term committed Earth system changes grow much faster than current observations. A novel metric linking this future growth to policy decisions today is the mitigation delay sensitivity (MDS), but MDS estimates for Earth system variables other than peak temperature (ΔT max) are missing. Using an Earth System Model of Intermediate Complexity, we show that the current emission increase rate causes a ΔT max increase roughly 3–7.5 times as fast as observed warming, and a millenial steric sea level rise (SSLR) 7–25 times as fast as observed SSLR, depending on the achievable rate of emission reductions after the peak of emissions. These ranges are only slightly affected by the uncertainty range in equilibrium climate sensitivity, which is included in the above values. The extent of ocean acidification at the end of the century is also strongly dependent on the starting time and rate of emission reductions. The preservable surface ocean area with sufficient aragonite supersaturation for coral reef growth is diminished globally at an MDS of roughly 25%–80% per decade. A near-complete loss of this area becomes unavoidable if mitigation is delayed for a few years to decades. Also with respect to aragonite, 12%–18% of the Southern Ocean surface become undersaturated per decade, if emission reductions are delayed beyond 2015–2040. We conclude that the consequences of delaying global emission reductions are much better captured if the MDS of relevant Earth system variables is communicated in addition to current trends and total projected future changes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The eruption of Tambora (Indonesia) in April 1815 had substantial effects on global climate and led to the ‘Year Without a Summer’ of 1816 in Europe and North America. Although a tragic event — tens of thousands of people lost their lives — the eruption also was an ‘experiment of nature’ from which science has learned until today. The aim of this study is to summarize our current understanding of the Tambora eruption and its effects on climate as expressed in early instrumental observations, climate proxies and geological evidence, climate reconstructions, and model simulations. Progress has been made with respect to our understanding of the eruption process and estimated amount of SO2 injected into the atmosphere, although large uncertainties still exist with respect to altitude and hemispheric distribution of Tambora aerosols. With respect to climate effects, the global and Northern Hemispheric cooling are well constrained by proxies whereas there is no strong signal in Southern Hemisphere proxies. Newly recovered early instrumental information for Western Europe and parts of North America, regions with particularly strong climate effects, allow Tambora’s effect on the weather systems to be addressed. Climate models respond to prescribed Tambora-like forcing with a strengthening of the wintertime stratospheric polar vortex, global cooling and a slowdown of the water cycle, weakening of the summer monsoon circulations, a strengthening of the Atlantic Meridional Overturning Circulation, and a decrease of atmospheric CO₂. Combining observations, climate proxies, and model simulations for the case of Tambora, a better understanding of climate processes has emerged.