12 resultados para Early Development in Sport
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Insulin-like growth factor I (IGF-I) plays a key role in the complex system that regulates bony fish growth, differentiation, and reproduction. The major source of circulating IGF-I is liver, but IGF-I-producing cells also occur in other organs, including the gonads. Because no data are available on the potential production sites of IGF-I in gonad development, developmental stages of monosex breedings of male and female tilapia from 0 day postfertilization (DPF) to 90 DPF were investigated for the production sites of IGF-I at the peptide (immunohistochemistry) and mRNA (in situ hybridization) level. IGF-I mRNA first appeared in somatic cells of the male and female gonad anlage at 7 DPF followed by IGF-I peptide around 9-10 DPF. Gonad anlagen were detected from 7 DPF. Starting at 7 DPF, IGF-I peptide but no IGF-I mRNA was observed in male and female primordial germ cells (PGCs) provided that IGF-I mRNA was not under the detection level, this observation may suggest that IGF-I originates from the somatic cells and is transferred to the PGCs or is of maternal origin. While in female germ cells IGF-I mRNA and peptide appeared at 29 DPF, in male germ cells both were detected as late as at 51-53 DPF. It is assumed that the production of IGF-I in the germ cells is linked to the onset of meiosis that in tilapia ovary starts at around 28 DPF and in testes at around 52-53 DPF. In adult testis, IGF-I mRNA and peptide occurred in the majority of spermatogonia and spermatocytes as well as in Leydig cells, the latter indicating a role of IGF-I in the synthesis of male sex steroids. In adult ovary, IGF-I mRNA and IGF-I peptide were always present in small and previtellogenic oocytes but only IGF-I peptide infrequently occurred in oocytes at the later stages. IGF-I expression appeared in numerous granulosa and some theca cells of follicles at the lipid stage and persisted in follicles with mature oocytes. The results suggest a crucial role of local IGF-I in the formation, differentiation and function of tilapia gonads.
Resumo:
BACKGROUND There is an urgent need for preclinical models of prostate cancer; however, clinically relevant patient-derived prostate cancer xenografts (PDXs) are demanding to establish. METHODS Sixty-seven patients who were undergoing palliative transurethral surgery or radical prostatectomy for histologically confirmed, clinically relevant prostate cancer were included in the study. Fresh prostate cancer tissue was identified by frozen analysis in 48 patients. The cancer tissue was transplanted subcutaneously and under the renal capsule of NSG and NOG mice supplemented with human testosterone. All growing PDXs were evaluated by histology and immunohistochemistry. RESULTS Early assessment of the animals at least three months after transplantation included 27/48 (56.3%) eligible PDX cohorts. PDX growth was detected in 10/27 (37%) mouse cohorts. Eight of the ten PDXs were identified as human donor derived lymphomas, including seven Epstein Barr virus (EBV)-positive diffuse large B-cell lymphomas and one EBV-negative peripheral T-cell lymphoma. One sample consisted of benign prostatic tissue, and one sample comprised a benign epithelial cyst. Prostate cancer was not detected in any of the samples. CONCLUSIONS Tumors that arise within the first three months after prostate cancer xenografting may represent patient-derived EBV-positive lymphomas in up to 80% of the early growing PDXs when using triple knockout NSG immunocompromised mice. Therefore, lymphoma should be excluded in prostate cancer xenografts that do not resemble typical prostatic adenocarcinoma. Prostate 9999: XX-XX, 2014. © 2015 Wiley Periodicals, Inc.
Genome-Wide Analyses Suggest Mechanisms Involving Early B-Cell Development in Canine IgA Deficiency.
Resumo:
Immunoglobulin A deficiency (IgAD) is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS) to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei) identified 35 genomic loci suggestively associated (p <0.0005) to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9) were genome-wide significantly associated (p <0.0002) with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005) to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.
Resumo:
Maternal smoking during pregnancy increases childhood asthma risk, but health effects in children of nonsmoking mothers passively exposed to tobacco smoke during pregnancy are unclear. We examined the association of maternal passive smoking during pregnancy and wheeze in children aged ≤2 years.Individual data of 27 993 mother-child pairs from 15 European birth cohorts were combined in pooled analyses taking into consideration potential confounders.Children with maternal exposure to passive smoking during pregnancy and no other smoking exposure were more likely to develop wheeze up to the age of 2 years (OR 1.11, 95% CI 1.03-1.20) compared with unexposed children. Risk of wheeze was further increased by children's postnatal passive smoke exposure in addition to their mothers' passive exposure during pregnancy (OR 1.29, 95% CI 1.19-1.40) and highest in children with both sources of passive exposure and mothers who smoked actively during pregnancy (OR 1.73, 95% CI 1.59-1.88). Risk of wheeze associated with tobacco smoke exposure was higher in children with an allergic versus nonallergic family history.Maternal passive smoking exposure during pregnancy is an independent risk factor for wheeze in children up to the age of 2 years. Pregnant females should avoid active and passive exposure to tobacco smoke for the benefit of their children's health.
Resumo:
The development of zebrafish paired fins and tetrapod forelimbs and hindlimbs show striking similarities at the molecular level. In recent years, the zebrafish, Danio rerio has become a valuable model for the study of the development of vertebrate paired appendages and several large-scale mutagenesis screens have identified novel fin mutants. This review summarizes recent advances in research into zebrafish paired fin development and highlights features that are shared with and distinct from limb development in other main animal models.
Resumo:
OBJECTIVE To investigate the effects of interleukin-17A (IL-17A) on osteoclastogenesis in vitro. METHODS Bone marrow cells (BMCs) were isolated from the excised tibia and femora of wild-type C57BL/6J mice, and osteoblasts were obtained by sequential digestion of the calvariae of ddY, C57BL/6J, and granulocyte-macrophage colony-stimulating factor-knockout (GM-CSF(-/-)) mice. Monocultures of BMCs or cocultures of BMCs and osteoblasts were supplemented with or without 1,25-dihydroxyvitamin D(3)(1,25[OH](2)D(3)), recombinant human macrophage colony-stimulating factor (M-CSF), RANKL, and IL-17A. After 5-6 days, the cultures were fixed with 4% paraformaldehyde and subsequently stained for the osteoclast marker enzyme tartrate-resistant acid phosphatase (TRAP). Osteoprotegerin (OPG) and GM-CSF expression were measured by enzyme-linked immunosorbent assay, and transcripts for RANK and RANKL were detected by real-time polymerase chain reaction. RESULTS In both culture systems, IL-17A alone did not affect the development of osteoclasts. However, the addition of IL-17A plus 1,25(OH)(2)D(3) to cocultures inhibited early osteoclast development within the first 3 days of culture and induced release of GM-CSF into the culture supernatants. Furthermore, in cocultures of GM-CSF(-/-) mouse osteoblasts and wild-type mouse BMCs, IL-17A did not affect osteoclast development, corroborating the role of GM-CSF as the mediator of the observed inhibition of osteoclastogenesis by IL-17A. CONCLUSION These findings suggest that IL-17A interferes with the differentiation of osteoclast precursors by inducing the release of GM-CSF from osteoblasts.
Resumo:
Estrogens are known to play a role in both reproductive and non-reproductive functions in mammals. Estrogens and their receptors are involved in the development of the central nervous system (brain development, neuronal survival and differentiation) as well as in the development of the peripheral nervous system (sensory-motor behaviors). In order to decipher possible functions of estrogens in early development of the zebrafish sensory system, we investigated the role of estrogen receptor beta(2) (ERbeta(2)) by using a morpholino (MO) approach blocking erbeta(2) RNA translation. We further investigated the development of lateral line organs by cell-specific labeling, which revealed a disrupted development of neuromasts in morphants. The supporting cells developed and migrated normally. Sensory hair cells, however, were absent in morphants' neuromasts. Microarray analysis and subsequent in situ hybridizations indicated an aberrant activation of the Notch signaling pathway in ERbeta(2) morphants. We conclude that signaling via ERbeta(2) is essential for hair cell development and may involve an interaction with the Notch signaling pathway during cell fate decision in the neuromast maturation process.
Resumo:
Research consistently shows that personality development is a lifelong phenomenon, with mean-level and rank-order changes occurring in all life phases. What happens during specific life phases that can explain these developmental patterns? In the present paper, we review literature linking personality development in different phases of adulthood to developmental tasks associated with these phases. Building on previous work, we describe several categories of developmental tasks that are present in all phases of adulthood. However, the specific tasks within these categories change across adulthood from establishing new social roles in early adulthood to maintaining them in middle adulthood and preventing losses in old age. This trajectory is reflected in mean-level changes in personality, which indicates development towards greater maturity (increases in social dominance, conscientiousness, and emotional stability) in early and middle adulthood, but less so at the end of life. Importantly, developmental tasks are not only associated with mean-level changes, but the way in which people deal with these tasks is also related to rank-order changes in personality. We provide an outlook for future research on how the influence of historical time on the normativeness of developmental tasks might be reflected in personality development.
Resumo:
Secondary sexual traits in males of polygynous species are important determinants of reproductive success. It is, however, unknown if and how the development of continuously growing traits at different life-stages is related to reproduction in long-lived male mammals. In this study, we evaluated the relationship of early and late horn growth on social status and reproduction in long-lived male Alpine ibex (Capra ibex). For this, we analysed individual horn growth and assessed its effect on dominance and reproduction. No evidence was detected for compensatory horn growth, as late-life horn growth positively depended on early-life horn growth in males. Still, individuals with longer horn segments grown during early adulthood experienced a stronger age-dependent length decline in annual horn growth during the late development. Accordingly, a divergence between individual growth potential and realized horn growth late in life has to be assumed. Residual age-specific horn length and length of early grown horn segments both positively affected dominance and reproductive success, whereas, contrary to our expectation, no significant effect of the length of horn segments grown during the late development was detected. Suspected higher somatic costs incurred by high-quality males during their late development might at least partly be responsible for this finding. Overall, our study suggests that the total length of horns and their early development in long-lived male Alpine ibex is a reliable indicator of reproductive success and that individuals may be unable to compensate for poor early-life growth performance at a later point in life.
Resumo:
Whereas the genetic background of horn growth in cattle has been studied extensively, little is known about the morphological changes in the developing fetal horn bud. In this study we histologically analyzed the development of horn buds of bovine fetuses between ~70 and ~268 days of pregnancy and compared them with biopsies taken from the frontal skin of the same fetuses. In addition we compared the samples from the wild type (horned) fetuses with samples taken from the horn bud region of age-matched genetically hornless (polled) fetuses. In summary, the horn bud with multiple layers of vacuolated keratinocytes is histologically visible early in fetal life already at around day 70 of gestation and can be easily differentiated from the much thinner epidermis of the frontal skin. However, at the gestation day (gd) 212 the epidermis above the horn bud shows a similar morphology to the epidermis of the frontal skin and the outstanding layers of vacuolated keratinocytes have disappeared. Immature hair follicles are seen in the frontal skin at gd 115 whereas hair follicles below the horn bud are not present until gd 155. Interestingly, thick nerve bundles appear in the dermis below the horn bud at gd 115. These nerve fibers grow in size over time and are prominent shortly before birth. Prominent nerve bundles are not present in the frontal skin of wild type or in polled fetuses at any time, indicating that the horn bud is a very sensitive area. The samples from the horn bud region from polled fetuses are histologically equivalent to samples taken from the frontal skin in horned species. This is the first study that presents unique histological data on bovine prenatal horn bud differentiation at different developmental stages which creates knowledge for a better understanding of recent molecular findings.
Resumo:
Pollen and plant macrofossils were analysed at Sägistalsee (1935 m asl), a small lake near timber-line in the Swiss Northern Alps. Open forests with Pinus cembra and Abies alba covered the catchment during the early Holocene (9000–6300 cal. BP), suggesting subcontinental climate conditions. After the expansion of Picea abies between 6300 and 6000 cal. BP the subalpine forest became denser and the tree-line reached its maximum elevation at around 2260 m asl. Charcoal fragments in the macrofossil record indicate the beginning of Late-Neolithic human impact at ca. 4400 cal. BP, followed by a extensive deforestation and lowering of the forest-limit in the catchment of Sägistalsee at 3700 cal. BP (Bronze Age). Continuous human activity, combined with a more oceanic climate during the later Holocene, led to the local extinction of Pinus cembra and Abies alba and favoured the mass expansion of Picea and Alnus viridis in the subalpine area of the Northern Alps. The periods before 6300 and after 3700 cal. BP are characterised by high erosion activity in the lake's catchment, whereas during the phase of dense Picea-Pinus cembra-Abies forests (6300–3700 cal. BP) soils were stable and sediment-accumulation rates in the lake were low. Due to decreasing land-use at higher altitudes during the Roman occupation and the Migration period, forests spread beween ca. 2000 and 1500 cal. BP, before human impact increased again in the early Middle Ages. Recent reforestation due to land-use changes in the 20th century is recorded in the top sediments. Pollen-inferred July temperature and annual precipitation suggest a trend to cooler and more oceanic climate starting at about 5500 cal. BP.
Resumo:
In order to assess dogs’ personality changes during ontogeny, a cohort of 69 Border collies was followed up from six to 18–24 months. When the dogs were 6, 12, and 18–24 months old, their owners repeatedly filled in a dog personality questionnaire (DPQ), which yielded five personality factors divided into fifteen facets. All five DPQ factors were highly correlated between the three age classes, indicating that the dogs’ personality remained consistent relative to other individuals. Nonetheless, at the group level significant changes with age were found for four of the five DPQ factors. Fearfulness, Aggression towards People, Responsiveness to Training and Aggression towards Animals increased with age; only Activity/Excitability did not change significantly over time. These changes in DPQ factor scores occurred mainly between the ages of 6 and 12 months, although some facets changed beyond this age. No sex differences were found for any of the tested factors or facets, suggesting that individual variation in personality was greater than male/female differences. There were significant litter effects for the factors Fearfulness, Aggression towards People and Activity/Excitability, indicating either a strong genetic basis for these traits or a high influence of the shared early environment. To conclude, from the age of six months, consistency in personality relative to other individuals can be observed in Border collies. However, at the group level, increases in fearful and aggressive behaviours occur up to 12 months and for some traits up to two years, highlighting the need for early interventions. Follow-up studies are needed to assess trajectories of personality development prior to six months and after two years, and to include a wider variety of breeds.