4 resultados para EXTENDED EXPONENTIAL DISTRIBUTION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Serial correlation of extreme midlatitude cyclones observed at the storm track exits is explained by deviations from a Poisson process. To model these deviations, we apply fractional Poisson processes (FPPs) to extreme midlatitude cyclones, which are defined by the 850 hPa relative vorticity of the ERA interim reanalysis during boreal winter (DJF) and summer (JJA) seasons. Extremes are defined by a 99% quantile threshold in the grid-point time series. In general, FPPs are based on long-term memory and lead to non-exponential return time distributions. The return times are described by a Weibull distribution to approximate the Mittag–Leffler function in the FPPs. The Weibull shape parameter yields a dispersion parameter that agrees with results found for midlatitude cyclones. The memory of the FPP, which is determined by detrended fluctuation analysis, provides an independent estimate for the shape parameter. Thus, the analysis exhibits a concise framework of the deviation from Poisson statistics (by a dispersion parameter), non-exponential return times and memory (correlation) on the basis of a single parameter. The results have potential implications for the predictability of extreme cyclones.
Resumo:
Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon’s implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike’s preceding ISI. As we show, the EIF’s exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron’s ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational theories about UP states during slow wave sleep and present possible extensions of the model in the context of spike-frequency adaptation.
Resumo:
Common ash (Fraxinus excelsior L.) is a medium-sized deciduous tree with large compound leaves that develop relatively late in spring. It flowers before leaf-buds burst and trees can carry male, female, or hermaphrodite flowers, or different combinations of the flower types. It grows throughout the European temperate zone, but is absent from the driest Mediterranean areas because it does not tolerate extended summer drought, and from the northern boreal regions, with its seedlings in particular being vulnerable to late spring frost. Soils exert a strong control on common ash distribution locally. The species grows best on fertile soils where soil pH exceeds 5.5. It rarely forms pure stands, more often it is found in small groups in mixed stands. Ash trees produce high quality timber that combines light weight, strength, and flexibility. Before the mass use of steel, it was used for a wide range of purposes, from agricultural implements to construction of boat and car frames. Today
Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): an extended palynological approach
Resumo:
Knowledge about the glacial refugia of the thermophilous European Castanea sativa Mill. (sweet chestnut) is still inadequate. Its original range of distribution has been masked by strong human impact. Moreover, under natural conditions the species was probably admixed with other taxa (such as Quercus, Fraxinus, Fagus, Tilia) and thus possibly represented by low percentages in pollen records. In this paper we try to overcome the difficulties related to the scarcity and irregularity of chestnut pollen records by considering 1471 sites and extending the palynological approach to develop a Castanea refugium probability index (IRP), aimed at detecting possible chestnut refugia where chestnuts survived during the last glaciation. The results are in close agreement with the current literature on the refugia of other thermophilous European trees. The few divergences are most probably due to the large amount of new data integrated in this study, rather than to fundamental disagreements about data and data interpretation. The main chestnut refugia are located in the Transcaucasian region, north-western Anatolia, the hinterland of the Tyrrhenian coast from Liguria to Lazio along the Apennine range, the region around Lago di Monticchio (Monte Vulture) in southern Italy, and the Cantabrian coast on the Iberian peninsula. Despite the high likelihood of Castanea refugia in the Balkan Peninsula and north-eastern Italy (Colli Euganei, Monti Berici, Emilia-Romagna) as suggested by the IRP, additional palaeobotanical investigations are needed to assess whether these regions effectively sheltered chestnut during the last glaciation. Other regions, such as the Isère Département in France, the region across north-west Portugal and Galicia, and the hilly region along the Mediterranean coast of Syria and Lebanon were classified as areas of medium refugium probability. Our results reveal an unexpected spatial richness of potential Castanea refugia. It is likely that other European trees had similar distribution ranges during the last glaciation. It is thus conceivable that shelter zones with favourable microclimates were probably more numerous and more widely dispersed across Europe than so far assumed. In the future, more attention should be paid to pollen traces of sporadic taxa thought to have disappeared from a given area during the last glacial and post-glacial period.