33 resultados para ENERGY LEVEL CROSSING
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Dual-energy CT provides information about how substances behave at different energies, the ability to generate virtual unenhanced datasets, and improved detection of iodine-containing substances on low-energy images. Knowing how a substance behaves at two different energies can provide information about tissue composition beyond that obtainable with single-energy techniques. The term K edge refers to the spike in attenuation that occurs at energy levels just greater than that of the K-shell binding because of the increased photoelectric absorption at these energy levels. K-edge values vary for each element, and they increase as the atomic number increases. The energy dependence of the photoelectric effect and the variability of K edges form the basis of dual-energy techniques, which may be used to detect substances such as iodine, calcium, and uric acid crystals. The closer the energy level used in imaging is to the K edge of a substance such as iodine, the more the substance attenuates. In the abdomen and pelvis, dual-energy CT may be used in the liver to increase conspicuity of hypervascular lesions; in the kidneys, to distinguish hyperattenuating cysts from enhancing renal masses and to characterize renal stone composition; in the adrenal glands, to characterize adrenal nodules; and in the pancreas, to differentiate between normal and abnormal parenchyma.
Resumo:
Asynchronous level crossing sampling analog-to-digital converters (ADCs) are known to be more energy efficient and produce fewer samples than their equidistantly sampling counterparts. However, as the required threshold voltage is lowered, the number of samples and, in turn, the data rate and the energy consumed by the overall system increases. In this paper, we present a cubic Hermitian vector-based technique for online compression of asynchronously sampled electrocardiogram signals. The proposed method is computationally efficient data compression. The algorithm has complexity O(n), thus well suited for asynchronous ADCs. Our algorithm requires no data buffering, maintaining the energy advantage of asynchronous ADCs. The proposed method of compression has a compression ratio of up to 90% with achievable percentage root-mean-square difference ratios as a low as 0.97. The algorithm preserves the superior feature-to-feature timing accuracy of asynchronously sampled signals. These advantages are achieved in a computationally efficient manner since algorithm boundary parameters for the signals are extracted a priori.
Resumo:
The aim of this study was to assess the potential of monoenergetic computed tomography (CT) images to reduce beam hardening artifacts in comparison to standard CT images of dental restoration on dental post-mortem CT (PMCT). Thirty human decedents (15 male, 58 ± 22 years) with dental restorations were examined using standard single-energy CT (SECT) and dual-energy CT (DECT). DECT data were used to generate monoenergetic CT images, reflecting the X-ray attenuation at energy levels of 64, 69, 88 keV, and at an individually adjusted optimal energy level called OPTkeV. Artifact reduction and image quality of SECT and monoenergetic CT were assessed objectively and subjectively by two blinded readers. Subjectively, beam artifacts decreased visibly in 28/30 cases after monoenergetic CT reconstruction. Inter- and intra-reader agreement was good (k = 0.72, and k = 0.73 respectively). Beam hardening artifacts decreased significantly with increasing monoenergies (repeated-measures ANOVA p < 0.001). Artifact reduction was greatest on monoenergetic CT images at OPTkeV. Mean OPTkeV was 108 ± 17 keV. OPTkeV yielded the lowest difference between CT numbers of streak artifacts and reference tissues (-163 HU). Monoenergetic CT reconstructions significantly reduce beam hardening artifacts from dental restorations and improve image quality of post-mortem dental CT.
Resumo:
Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.
Resumo:
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of sqrt(s) = 7 TeV corresponding to an integrated luminosity of 38 inverse pb. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0.4 or R=0.6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pt > 20 GeV and pseudorapidities eta<4.5. The JES systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams. The JES uncertainty is less than 2.5% in the central calorimeter region (eta<0.8) for jets with 60 < pt < 800 GeV, and is maximally 14% for pt < 30 GeV in the most forward region 3.2
Resumo:
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of sqrt(s) = 7 TeV corresponding to an integrated luminosity of 38 inverse pb. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0.4 or R=0.6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pt > 20 GeV and pseudorapidities eta<4.5. The JES systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams. The JES uncertainty is less than 2.5% in the central calorimeter region (eta<0.8) for jets with 60 < pt < 800 GeV, and is maximally 14% for pt < 30 GeV in the most forward region 3.2
Resumo:
The amino-keto tautomer of supersonic jet-cooled cytosine undergoes intersystem crossing (ISC) from the v = 0 and low-lying vibronic levels of its S1(¹ππ*) state. We investigate these ISC rates experimentally and theoretically as a function of S1 state vibrational excess energy Eexc. The S1 vibronic levels are pumped with a ~5 ns UV laser, the S1 and triplet state ion signals are separated by prompt or delayed ionization with a second UV laser pulse. After correcting the raw ISC yields for the relative S1 and T1ionization cross sections, we obtain energy dependent ISC quantum yields Q corr ISC =1% –5%. These are combined with previously measured vibronic state-specific decay rates, giving ISC rates kISC = 0.4–1.5 ⋅ 10⁹ s⁻¹, the corresponding S1⇝S0internal conversion (IC) rates are 30–100 times larger. Theoretical ISC rates are computed using SCS-CC2 methods, which predict rapid ISC from the S1; v = 0 state with kISC = 3 ⋅ 10⁹ s⁻¹ to the T1(³ππ*) triplet state. The surprisingly high rate of this El Sayed-forbidden transition is caused by a substantial admixture of ¹nOπ* character into the S1(¹ππ*) wave function at its non-planar minimum geometry. The combination of experiment and theory implies that (1) below Eexc = 550 cm⁻¹ in the S1 state, S1⇝S0internal conversion dominates the nonradiative decay with kIC ≥ 2 ⋅ 10¹⁰ s⁻¹, (2) the calculated S1⇝T1 (¹ππ*⇝³ππ*) ISC rate is in good agreement with experiment, (3) being El-Sayed forbidden, the S1⇝T1 ISC is moderately fast (kISC = 3 ⋅ 10⁹ s⁻¹), and not ultrafast, as claimed by other calculations, and (4) at Eexc ~ 550 cm⁻¹ the IC rate increases by ~50 times, probably by accessing the lowest conical intersection (the C5-twist CI) and thereby effectively switching off the ISC decay channels.
Resumo:
The aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm(2)) was applied to femoral heads of 18 adult Sprague-Dawley rats. Two sham-treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin-O-stained sections. Expression of tenascin-C and chitinase 3-like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real-time polymerase chain reaction (PCR) was used to examine collagen (II)alpha(1) (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin-C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough-surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High-energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA.
Resumo:
The evolution of the Next Generation Networks, especially the wireless broadband access technologies such as Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX), have increased the number of "all-IP" networks across the world. The enhanced capabilities of these access networks has spearheaded the cloud computing paradigm, where the end-users aim at having the services accessible anytime and anywhere. The services availability is also related with the end-user device, where one of the major constraints is the battery lifetime. Therefore, it is necessary to assess and minimize the energy consumed by the end-user devices, given its significance for the user perceived quality of the cloud computing services. In this paper, an empirical methodology to measure network interfaces energy consumption is proposed. By employing this methodology, an experimental evaluation of energy consumption in three different cloud computing access scenarios (including WiMAX) were performed. The empirical results obtained show the impact of accurate network interface states management and application network level design in the energy consumption. Additionally, the achieved outcomes can be used in further software-based models to optimized energy consumption, and increase the Quality of Experience (QoE) perceived by the end-users.
Resumo:
Recently the issue of radiative corrections to leptogenesis has been raised. Considering the "strong washout" regime, in which OPE-techniques permit to streamline the setup, we report the thermal self-energy matrix of heavy right-handed neutrinos at NLO (resummed 2-loop level) in Standard Model couplings. The renormalized expression describes flavour transitions and "inclusive" decays of chemically decoupled right-handed neutrinos. Although CP-violation is not addressed, the result may find use in existing leptogenesis frameworks.
Resumo:
A transmission electron microscope (TEM) accessory, the energy filter, enables the establishment of a method for elemental microanalysis, the electron energy-loss spectroscopy (EELS). In conventional TEM, unscattered, elastic, and inelastic scattered electrons contribute to image information. Energy-filtering TEM (EFTEM) allows elemental analysis at the ultrastructural level by using selected inelastic scattered electrons. EELS is an excellent method for elemental microanalysis and nanoanalysis with good sensitivity and accuracy. However, it is a complex method whose potential is seldom completely exploited, especially for biological specimens. In addition to spectral analysis, parallel-EELS, we present two different imaging techniques in this chapter, namely electron spectroscopic imaging (ESI) and image-EELS. We aim to introduce these techniques in this chapter with the elemental microanalysis of titanium. Ultrafine, 22-nm titanium dioxide particles are used in an inhalation study in rats to investigate the distribution of nanoparticles in lung tissue.
Resumo:
The purpose of this retrospective study was to evaluate the impact of energy subtraction (ES) chest radiography on the detection of pulmonary nodules and masses in daily routine. Seventy-seven patients and 25 healthy subjects were examined with a single exposure digital radiography system. Five blinded readers evaluated first the non-subtracted PA and lateral chest radiographs alone and then together with the subtracted PA soft tissue images. The size, location and number of lung nodules or masses were registered with the confidence level. CT was used as standard of reference. For the 200 total lesions, a sensitivity of 33.5-52.5% was found at non-subtracted and a sensitivity of 43.5-58.5% at energy-subtracted radiography, corresponding to a significant improvement in four of five readers (p < 0.05). However, in three of five readers the rate of false positives was higher with ES. With ES, sensitivity, but not the area under the alternative free-response receiver operating characteristics (AFROC) curve, showed a good correlation with reader experience (R = 0.90, p = 0.026). In four of five readers, the diagnostic confidence improved with ES (p = 0.0036). We conclude that single-exposure digital ES chest radiography improves detection of most pulmonary nodules and masses, but identification of nodules <1 cm and false-positive findings remain a problem.