20 resultados para ENDOTHELIUM-DEPENDENT RELAXATION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Endothelial dysfunction is a marker for development and progression of atherosclerosis. Statin therapy improves endothelial function in cardiovascular patients by reducing LDL-cholesterol and by pleiotropic effects. B-group vitamin supplementation restores endothelial function mainly by reducing homocysteine-induced oxidative stress. Thus, we evaluated the effect of rosuvastatin, B-group vitamins and their combination on endothelial function in high-risk cardiovascular patients.
Resumo:
This study investigated vascular reactivity in response to acetylcholine, in the presence of acute inhibition of nitric oxide synthase, in the carotid artery and aorta of obese C57Bl6/J mice fed on a high-fat diet for 30 weeks, and of control mice. A subgroup of obese animals was also treated with the ET(A) receptor antagonist darusentan (50 mg x kg(-1) x day(-1)). In vascular rings from control animals, acetylcholine caused endothelium-dependent contractions in the carotid artery, but not in the aorta. In vascular rings from obese mice, contractility to acetylcholine was also evident in the aorta, and that in the carotid artery was increased compared with control mice. ET(A) receptor blockade by darusentan treatment of the obese mice prevented enhanced vasoconstriction to acetylcholine, resulting in mild vasodilatation. Thus obesity increases endothelium-dependent vasoconstriction in the absence of endothelial nitric oxide. This effect can be completely prevented by chronic ET(A) receptor blockade, suggesting that endothelin modulates increased endothelium-dependent vasoconstriction in obesity.
Resumo:
Type 1 diabetes is an immuno-inflammatory condition which increases the risk of cardiovascular disease, particularly in young adults. This study investigated whether vascular function is altered in mice prone to autoimmune diabetes and whether the nitric oxide (NO)-cyclic GMP axis is involved. Aortic rings suspended in organ chambers and precontracted with phenylephrine were exposed to cumulative concentrations of acetylcholine. To investigate the role of NO, some experiments were performed in the presence of either 1400W (N-(3-aminomethyl)benzyl-acetamidine hydrochloride), a selective inhibitor of the iNOS-isoform, L-NAME (N(G)-nitro-L-arginine methyl ester hydrochloride), an inhibitor of all three NOS-isoforms, or ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a selective inhibitor of guanylate cyclase. Moreover, contractility to phenylephrine, big endothelin-1, and endothelin-1 was assessed and histological analysis and iNOS immunohistochemistry were performed. Endothelium-dependent relaxation was reduced in prediabetic NOD mice (78+/-4 vs. 88+/-2%, respectively, P<0.05 vs. control) despite normal plasma glucose levels (n.s. vs. control). Preincubation with 1400W further attenuated responses in prediabetic (P<0.05 vs. untreated) but not in diabetic or in control mice. In contrast, basal NO bioactivity remained unaffected until the onset of diabetes in NOD mice. Contractile responses to big endothelin-1 and endothelin-1 were reduced in prediabetic animals (P<0.05 vs. control), whereas in diabetic mice only responses to big endothelin-1 were decreased (P<0.05 vs. control). These data demonstrate that endothelium-dependent and -independent vascular function in NOD mice is abnormal already in prediabetes in the absence of structural injury. Early proinflammatory activation due to iNOS in diabetes-prone NOD mice appears to be one of the mechanisms contributing to impaired vasoreactivity.
Resumo:
This study investigated the contribution of estrogen receptors (ERs) alpha and beta for epicardial coronary artery function, vascular NO bioactivity, and superoxide (O(2)(-)) formation. Porcine coronary rings were suspended in organ chambers and precontracted with prostaglandin F(2alpha) to determine direct effects of the selective ER agonists 4,4',4''-(4-propyl-[(1)H]pyrazole-1,3,5-triyl)tris-phenol (PPT) or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) or the nonselective ER agonist 17beta-estradiol. Indirect effects on contractility to U46619 and relaxation to bradykinin were assessed and effects on NO, nitrite, and O(2)(-) formation were measured in cultured cells. Within 5 minutes, selective ERalpha activation by PPT, but not 17beta-estradiol or the ERbeta agonist DPN, caused rapid, NO-dependent, and endothelium-dependent relaxation (49+/-5%; P<0.001 versus ethanol). PPT also caused sustained endothelium- and NO-independent vasodilation similar to 17beta-estradiol after 60 minutes (72+/-3%; P<0.001 versus ethanol). DPN induced endothelium-dependent NO-independent relaxation via endothelium-dependent hyperpolarization (40+/-4%; P<0.01 versus ethanol). 17beta-Estradiol and PPT, but not DPN, attenuated the responses to U46619 and bradykinin. All of the ER agonists increased NO and nitrite formation in vascular endothelial but not smooth muscle cells and attenuated vascular smooth muscle cell O(2)(-) formation (P<0.001). ERalpha activation had the most potent effects on both nitrite formation and inhibiting O(2)(-) (P<0.05). These data demonstrate novel and differential mechanisms by which ERalpha and ERbeta activation control coronary artery vasoreactivity in males and females and regulate vascular NO and O(2)(-) formation. The findings indicate that coronary vascular effects of sex hormones differ with regard to affinity to ERalpha and ERbeta, which will contribute to beneficial and adverse effects of hormone replacement therapy.
Resumo:
BACKGROUND Definitive fate of the coronary endothelium after implantation of a drug-eluting stent remains unclear, but evidence has accumulated that treatment with rapamycin-eluting stents impairs endothelial function in human coronary arteries. The aim of our study was to demonstrate this phenomenon on functional, morphological and biochemical level in human internal thoracic arteries (ITA) serving as coronary artery model. METHODS After exposure to rapamycin for 20 h, functional activity of ITA rings was investigated using the organ bath technique. Morphological analysis was performed by scanning electron microscopy and evaluated by two independent observers in blinded fashion. For measurement of endothelial nitric oxide synthase (eNOS) release, mammalian target of rapamycin (mTOR) and protein kinase B (PKB) (Akt) activation, Western blotting on human mammary epithelial cells-1 and on ITA homogenates was performed. RESULTS Comparison of the acetylcholine-induced relaxation revealed a significant concentration-dependent decrease to 66 ± 7 % and 36 ± 7 % (mean ± SEM) after 20-h incubation with 1 and 10 μM rapamycin. Electron microscopic evaluation of the endothelial layer showed no differences between controls and samples exposed to 10 μM rapamycin. Western blots after 20-h incubation with rapamycin (10 nM-1 μM) revealed a significant and concentration-dependent reduction of p (Ser 1177)-eNOS (down to 38 ± 8 %) in human mammary epithelial cells (Hmec)-1. Furthermore, 1 μM rapamycin significantly reduced activation of p (Ser2481)-mTOR (58 ± 11 %), p (Ser2481)-mTOR (23 ± 4 %) and p (Ser473)-Akt (38 ± 6 %) in ITA homogenates leaving Akt protein levels unchanged. CONCLUSIONS The present data suggests that 20-h exposure of ITA rings to rapamycin reduces endothelium-mediated relaxation through down-regulation of Akt-phosphorylation via the mTOR signalling axis within the ITA tissue without injuring the endothelial cell layer.
Resumo:
It is known that hypertension is associated with endothelial dysfunction and that Angiotensin II (Ang II) is a key player in the pathogenesis of hypertension. We aimed to elucidate whether endothelial dysfunction is a specific feature of Ang II-mediated hypertension or a common finding of hypertension, independently of underlying etiology. We studied endothelial-dependent vasorelaxation in precapillary resistance arterioles and in various large-caliber conductance arteries in wild-type mice with Ang II-dependent hypertension (2-kidney 1-clip (2K1C) model) or Ang II-independent (volume overload) hypertension (1-kidney 1-clip model (1K1C)). Normotensive sham mice were used as controls. Aortic mechanical properties were also evaluated. Intravital microscopy of precapillary arterioles revealed a significantly impaired endothelium-dependent vasorelaxation in 2K1C mice compared with sham mice, as quantified by the ratio of acetylcholine (ACh)-induced over S-nitroso-N-acetyl-D,L-penicillamine (SNAP)-induced vasorelaxation (2K1C: 0.49±0.12 vs. sham: 0.87±0.11, P=0.018). In contrast, the ACh/SNAP ratio in volume-overload hypertension 1K1C mice was not significantly different from sham mice, indicating no specific endothelial dysfunction (1K1C: 0.77±0.27 vs. sham: 0.87±0.11, P=0.138). Mechanical aortic wall properties and endothelium-dependent vasorelaxation, assessed ex vivo in rings of large-caliber conductance (abdominal and thoracic aorta, carotid and femoral arteries), were not different between 2K1C, 1K1C and sham mice. Endothelial dysfunction is an early feature of Ang II- but not volume-overload-mediated hypertension. This occurs exclusively at the level of precapillary arterioles and not in conduit arteries. Our findings, if confirmed in clinical studies, will provide a better understanding of the pathophysiological mechanisms of hypertension.
Resumo:
The patency rate of radial artery (RA) conduits is considerably lower than that of internal thoracic artery (ITA) grafts and the evidence suggests that this is due to a clinically suspected higher incidence of vasospasm. The aim of this study was, therefore, to compare intraindividually the pharmacological reactivity of RA with that of ITA. Both RA and ITA were taken from the same patients and investigated in parallel. Changes in tone were monitored isometrically on ring preparations from both arteries in organ baths with modified Krebs-Henseleit solution containing 1.25 mm calcium chloride at 1 g passive preload. In intraindividual comparisons maximal receptor-mediated contractile responses to noradrenaline and endothelin-1 and endothelium-dependent acetylcholine-induced relaxant responses revealed no differences between both arteries. By contrast, depolarization-induced contractions to potassium chloride (KCl) appeared to be significantly higher in RA than in ITA. Further analysis, however, revealed that this difference was due to preoperative calcium entry blocker (Ca(2+)eB) therapy. Compared with control tissues, maximal responses to KCl were significantly attenuated in the ITA but unchanged in RA when arteries were obtained from patients with preoperative Ca(2+)eB therapy. The present results suggested that functional responses to pharmacological stimuli of both RA and ITA were quite similar. Preoperative Ca(2+)eB therapy, however, attenuated markedly responses to KCl of the ITA leaving those of RA unchanged. These results, demonstrating a lower sensitivity to Ca(2+)eB of RA, therefore suggested that in addition to Ca(2+)eB other classes of drug may be more effective at reducing the propensity of RA conduits to vasospasm.
Resumo:
BACKGROUND: The noble gas helium is devoid of anesthetic effects, and it elicits cardiac preconditioning. We hypothesized that inhalation of helium provides protection against postocclusive endothelial dysfunction after ischemia-reperfusion of the forearm in humans. METHODS: Eight healthy male subjects were enrolled in this study with a crossover design. Each volunteer was randomly exposed to 15 min of forearm ischemia in the presence or absence of helium inhalation. Helium was inhaled at an end-tidal concentration of 50 vol% from 15 min before ischemia until 5 min after the onset of reperfusion ("helium conditioning"). Hyperemic reaction, a marker of nitric oxide bioavailability and endothelial function, was determined at 15 and 30 min of reperfusion on the forearm using venous occlusion plethysmography. Expression of the proinflammatory markers CD11b, ICAM-1, PSGL-1, and L-selectin (CD62L) on leukocytes and P-selectin (CD62P), PSGL-1, and CD42b on platelets were measured by flow cytometry during reperfusion. RESULTS: Ischemia-reperfusion consistently reduced the postocclusive endothelium-dependent hyperemic reaction at 15 and 30 min of reperfusion. Periischemic inhalation of helium at 50 vol% did not improve postocclusive hyperemic reaction. Helium decreased expression of the proinflammatory marker CD11b and ICAM-1 on leukocytes and attenuated the expression of the procoagulant markers CD42b and PSGL-1 on platelets. CONCLUSIONS: Although inhalation of helium diminished the postischemic inflammatory reaction, our data indicate that human endothelium, which is a component of all vital organs, is not amenable to protection by helium at 50 vol% in vivo. This is in contrast to sevoflurane, which protects human endothelium at low subanesthetic concentrations.
Resumo:
The aim of this analysis was to compare vasoreactive properties of internal thoracic arteries (ITA) grafts from diabetic (DM) to those of non-diabetic (ND) patients. Ring segments of ITA, taken from patients undergoing coronary artery bypass grafting, were suspended in organ bath chambers filled with modified Krebs-Henseleit solution and contractile responses to potassium chloride (KCl), noradrenaline (NA), endothelin-1 (ET-l), and endothelium-dependent relaxant responses to acetylcholine (ACH) were recorded isometrically. The receptor-mediated agonists NA and ET-1 stimulated ITA from both groups within similar concentration ranges while ITA from DM patients proved to be significantly more sensitive to KCl than ITA from ND. Furthermore, maximal contractile responses indicated that KCl (3.79 +/- 0.30 g, n = 7 in DM and 2.50 +/- 0.23 g, n = 29 in ND, P < 0.05) evoked significantly higher responses in ITA from DM as compared to the ND control group while both NA and ET-l stimulated ITA from both groups with similar efficacies. Endothelium-dependent relaxant responses to ACH proved to be similar in both groups when expressed as percentages of the pre-existing tone. The present data support the contention that in comparison to ND controls arteries from DM patients are more sensitive to depolarization but endothelial dysfunction is less frequent in human ITA than expected from observations in systemic vascular beds.
Resumo:
Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.
Resumo:
BACKGROUND: Omentin is a visceral fat-derived adipokine associated with endothelium-dependent vasodilation. Impaired endothelial function is a major cause of portal hypertension in liver cirrhosis. The aim was to assess associations of omentin with systemic markers of endothelial function, namely arginine and asymmetric dimethylarginine (ADMA) and complications of portal hypertension in liver cirrhosis. MATERIALS AND METHODS: Systemic omentin was measured by ELISA in portal venous serum (PVS), systemic venous serum (SVS) and hepatic venous serum (HVS) of 40 patients with liver cirrhosis and 10 liver-healthy controls. ADMA and arginine were determined in SVS of the patients by ELISA. RESULTS: Omentin is elevated in PVS and tends to be increased in SVS and HVS of patients with liver cirrhosis compared with controls. Omentin is principally expressed in visceral fat, and PVS omentin tends to be higher than SVS levels. Lower HVS than PVS omentin suggests that omentin may be partly removed from the circulation by the liver. Omentin in serum is not associated with stages of liver cirrhosis defined by CHILD-POUGH or MELD score and is not affected in patients with ascites. HVS omentin tends to be reduced in patients with large varices compared with patients without/with small varices. Arginine/ADMA ratio is reduced in patients with massive ascites but is not associated with variceal size. Further, Arginine/ADMA ratio does not correlate with omentin. CONCLUSION: Current data show that PVS omentin is increased in liver cirrhosis but is not associated with complications of portal hypertension
Resumo:
BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.
Resumo:
Paracetamol (acetaminophen, APAP) is a universally used analgesic and antipyretic agent. Considered safe at therapeutic doses, overdoses cause acute liver damage characterized by centrilobular hepatic necrosis. One of the major clinical problems of paracetamol-induced liver disease is the development of hemorrhagic alterations. Although hepatocytes represent the main target of the cytotoxic effect of paracetamol overdose, perturbations within the endothelium involving morphological changes of liver sinusoidal endothelial cells (LSECs) have also been described in paracetamol-induced liver disease. Recently, we have shown that paracetamol-induced liver damage is synergistically enhanced by the TRAIL signaling pathway. As LSECs are constantly exposed to activated immune cells expressing death ligands, including TRAIL, we investigated the effect of TRAIL on paracetamol-induced LSEC death. We here demonstrate for the first time that TRAIL strongly enhances paracetamol-mediated LSEC death with typical features of apoptosis. Inhibition of caspases using specific inhibitors resulted in a strong reduction of cell death. TRAIL appears to enhance paracetamol-induced LSEC death via the activation of the pro-apoptotic BH3-only proteins Bid and Bim, which initiate the mitochondrial apoptotic pathway. Taken together this study shows that the liver endothelial layer, mainly LSECs, represent a direct target of the cytotoxic effect of paracetamol and that activation of TRAIL receptor synergistically enhances paracetamol-induced LSEC death via the mitochondrial apoptotic pathway. TRAIL-mediated acceleration of paracetamol-induced cell death may thus contribute to the pathogenesis of paracetamol-induced liver damage.
Resumo:
Consistent with findings of Wnt pathway members involved in vascular cells, a role for Wnt/Frizzled signaling has recently emerged in vascular cell development. Among the few Wnt family members implicated in vessel formation in adult, Wnt7b and Frizzled 4 have been shown as involved in vessel formation in the lung and in the retina, respectively. Our previous work has shown a role for secreted Frizzled-related protein-1 (sFRP-1), a proposed Wnt signaling inhibitor, in neovascularization after an ischemic event and demonstrated its role as a potent angiogenic factor. However the mechanisms involved have not been investigated. Here, we show that sFRP-1 treatment increases endothelial cell spreading on extracellular matrix as revealed by actin stress fiber reorganization in an integrin-dependent manner. We demonstrate that sFRP-1 can interact with Wnt receptors Frizzled 4 and 7 on endothelial cells to transduce downstream to cellular machineries requiring Rac-1 activity in cooperation with GSK-3beta. sFRP-1 overexpression in endothelium specifically reversed the inactivation of GSK-3 beta and increased neovascularization in ischemia-induced angiogenesis in mouse hindlimb. This study illustrates a regulated pathway by sFRP-1 involving GSK-3beta and Rac-1 in endothelial cell cytoskeletal reorganization and in neovessel formation.
Resumo:
The activation of NO/cGMP pathways can induce pro-apoptotic pathways in cardiomyocytes although only a small number of cardiomyocytes fulfill the criteria of apoptosis. The same pathways reduce the contractile performance of cardiomyocytes. In the present study, we tested the hypothesis that exposure of cells to NO/cGMP for 24 h decrease their contractile performance due to an activation of pro-apoptotic pathways. Experiments were performed on freshly isolated and cultured adult ventricular rat cardiomyocytes. Cells were incubated with 8-bromo-cyclo-GMP (100 nmol/L-1 micromol/L), the NO donor SNAP (1 nmol/L-100 micromol/L), or the guanylyl cyclase activator YC-1 (3 micromol/L). Cell shortening, contraction and relaxation velocities, and diastolic cell lengths were determined at beating frequencies of 0.5, 1, and 2 Hz 24 h later. The activation of pro-apoptotic pathways was determined by staining of cardiomyocytes with an antibody directed against active caspase-3 and quantification of the number of apoptotic cells (annexin staining). Caspase-3 activation and an increase in the number of apoptotic cells was observed, but only at the highest concentrations tested (8-bromo-cyclo-GMP: 1-10 mmol/L; SNAP: 1-100 micromol/L). At these concentrations, none of the drugs decreased the mean cell shortening of cardiomyocytes. However, at concentrations lower than those required for induction of apoptotic cell death, the diastolic cell lengths and sarcomere lengths increased but cell shortening decreased. In conclusion, low concentrations of either NO or cGMP cause a desensitization of myofibrils, as indicated by elongated cell shapes, increased sarcomere lengths and reduced load-free cell shortening. High concentrations of NO/cGMP induce caspase-3 activation and increase the number of cells fulfilling the criteria of apoptotic cell death but did not impair cell function. Therefore, induction of apoptotic cell death per se seems not to contribute to the loss of contractile efficiency on the cellular level.