3 resultados para EMPALME DE SERIES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypokalemia is a recognized cause of rhabdomyolysis but very few reports document its association with inborn renal tubular disorders. We report our experience with hypokalemic rhabdomyolysis in 5 pediatric patients affected by inborn renal tubular disorders and the results of a careful review of the literature disclosing 9 further cases for a total of 14 patients (8 male and 6 female subjects, aged between 1.6 and 46, median 16 years). The inborn renal tubular disorders underlying rhabdomyolysis were classic distal renal tubular acidosis (n = 7), Gitelman syndrome (n = 5), classic Bartter syndrome (n = 1), and antenatal Bartter syndrome (n = 1). In 8 patients rhabdomyolysis followed an acute intestinal disease, an upper respiratory illness or the discontinuation of regular medication. Five patients experienced two or more episodes of rhabdomyolysis. In 10 patients the underlying renal tubular disorder was recognized concurrently with the episode of rhabdomyolysis or some weeks later. In conclusion some congenital renal tubular disorders predispose to hypokalemic rhabdomyolysis. Prevention of discontinuation of regular medication and electrolyte repair in the context of acute intercurrent illnesses might avoid the development of hypokalemic rhabdomyolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The aim of this study was to assess the effects of a series of different surface coated quantum dots (QDs) (organic, carboxylated [COOH] and amino [NH(2)] polytethylene glycol [PEG]) on J774.A1 macrophage cell viability and to further determine which part of the QDs cause such toxicity. Cytotoxic examination (MTT assay and LDH release) showed organic QDs to induce significant cytotoxicity up to 48 h, even at a low particle concentration (20 nM), whilst both COOH and NH(2) (PEG) QDs caused reduced cell viability and cell membrane permeability after 24 and 48 h exposure at 80 nM. Subsequent analysis of the elements that constitute the QD core, core/shell and (organic QD) surface coating showed that the surface coating drives QD toxicity. Elemental analysis (ICP-AES) after 48 h, however, also observed a release of Cd from organic QDs. In conclusion, both the specific surface coating and core material can have a significant impact on QD toxicity.