11 resultados para ELECTROPHYSIOLOGICAL PROPERTIES
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background: The pore-forming subunit of the cardiac sodium channel, Na v1.5, has been previously found to be mutated in genetically determined arrhythmias. Na v1.5 associates with many proteins that regulate its function and cellular localisation. In order to identify more in situ Na v1.5 interacting proteins, genetically-modified mice with a high-affinity epitope in the sequence of Na v1.5 can be generated. Methods: In this short study, we (1) compared the biophysical properties of the sodium current (I Na) generated by the mouse Na v1.5 (mNa v1.5) and human Na v1.5 (hNa v1.5) constructs that were expressed in HEK293 cells, and (2) investigated the possible alterations of the biophysical properties of the human Na v1.5 construct that was modified with specific epitopes. Results: The biophysical properties of mNa v1.5 were similar to the human homolog. Addition of epitopes either up-stream of the N-terminus of hNa v1.5 or in the extracellular loop between the S5 and S6 transmembrane segments of domain 1, significantly decreased the amount of I Na and slightly altered its biophysical properties. Adding green fluorescent protein (GFP) to the N-terminus did not modify any of the measured biophysical properties of hNa v1.5. Conclusions: These findings have to be taken into account when planning to generate genetically-modified mouse models that harbour specific epitopes in the gene encoding mNa v1.5.
Resumo:
HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) V j-sensitive gating of I j (V j, gap junction voltage; I j, gap junction current), (2) contribution and (3) kinetics of I j deactivation and (4) single-channel conductance. The first three reflect alterations of fast V j gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties.
Resumo:
Delta (delta) subunit containing GABA(A) receptors are expressed extra-synaptically and mediate tonic inhibition. In cerebellar granule cells, they often form a receptor together with alpha(6) subunits. We were interested to determine the architecture of these receptors. We predefined the subunit arrangement of 24 different GABA(A) receptor pentamers by subunit concatenation. These receptors (composed of alpha(6), beta(3) and delta subunits) were expressed in Xenopus oocytes and their electrophysiological properties analyzed. Currents elicited in response to GABA were determined in presence and absence of 3alpha, 21-dihydroxy-5alpha-pregnan-20-one and to 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol. alpha(6)-beta(3)-alpha(6)/delta receptors showed a substantial response to GABA alone. Three receptors, beta(3)-alpha(6)-delta/alpha(6)-beta(3), alpha(6)-beta(3)-alpha(6)/beta(3)-delta and beta(3)-delta-beta(3)/alpha(6)-beta(3), were only uncovered in the combined presence of the neurosteroid 3alpha, 21-dihydroxy-5alpha-pregnan-20-one with GABA. All four receptors were activated by 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol. None of the functional receptors was modulated by physiological concentrations (up to 30 mM) of ethanol. GABA concentration response curves indicated that the delta subunit can contribute to the formation of an agonist site. We conclude from the investigated receptors that the delta subunit can assume multiple positions in a receptor pentamer composed of alpha(6), beta(3) and delta subunits.
Resumo:
Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases, including schizophrenia, autism, and epilepsy. Here, we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles, neurotransmitter phenotypes, and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology.
Resumo:
Background and Purpose: The antimalarial compounds quinine, chloroquine and mefloquine affect the electrophysiological properties of Cys-loop receptors and have structural similarities to 5-HT3 receptor antagonists. They may therefore act at 5-HT3 receptors. Experimental Approach: The effects of quinine, chloroquine and mefloquine on electrophysiological and ligand binding properties of 5-HT3A receptors expressed in HEK 293 cells and Xenopus oocytes were examined. The compounds were also docked into models of the binding site. Key Results: 5-HT3 responses were blocked with IC50 values of 13.4 μM, 11.8 μM and 9.36 μM for quinine, chloroquine and mefloquine. Schild plots indicated quinine and chloroquine behaved competitively with pA2 values of 4.92 (KB=12.0 μM) and 4.97 (KB=16.4 μM). Mefloquine displayed weakly voltage-dependent, non-competitive inhibition consistent with channel block. On and off rates for quinine and chloroquine indicated a simple bimolecular reaction scheme. Quinine, chloroquine and mefloquine displaced [3H]granisetron with Ki values of 15.0, 24.2 and 35.7 μM. Docking of quinine into a homology model of the 5-HT3 receptor binding site located the tertiary ammonium between W183 and Y234, and the quinoline ring towards the membrane, stabilised by a hydrogen bond with E129. For chloroquine, the quinoline ring was positioned between W183 and Y234 and the tertiary ammonium stabilised by interactions with F226. Conclusions and Implications: This study shows that quinine and chloroquine competitively inhibit 5-HT3 receptors, while mefloquine inhibits predominantly non-competitively. Both quinine and chloroquine can be docked into a receptor binding site model, consistent with their structural homology to 5-HT3 receptor antagonists.
Resumo:
BACKGROUND Mutations in the SCN9A gene cause chronic pain and pain insensitivity syndromes. We aimed to study clinical, genetic, and electrophysiological features of paroxysmal extreme pain disorder (PEPD) caused by a novel SCN9A mutation. METHODS Description of a 4-generation family suffering from PEPD with clinical, genetic and electrophysiological studies including patch clamp experiments assessing response to drug and temperature. RESULTS The family was clinically comparable to those reported previously with the exception of a favorable effect of cold exposure and a lack of drug efficacy including with carbamazepine, a proposed treatment for PEPD. A novel p.L1612P mutation in the Nav1.7 voltage-gated sodium channel was found in the four affected family members tested. Electrophysiologically the mutation substantially depolarized the steady-state inactivation curve (V1/2 from -61.8 ± 4.5 mV to -30.9 ± 2.2 mV, n = 4 and 7, P < 0.001), significantly increased ramp current (from 1.8% to 3.4%, n = 10 and 12) and shortened recovery from inactivation (from 7.2 ± 5.6 ms to 2.2 ± 1.5 ms, n = 11 and 10). However, there was no persistent current. Cold exposure reduced peak current and prolonged recovery from inactivation in wild-type and mutated channels. Amitriptyline only slightly corrected the steady-state inactivation shift of the mutated channel, which is consistent with the lack of clinical benefit. CONCLUSIONS The novel p.L1612P Nav1.7 mutation expands the PEPD spectrum with a unique combination of clinical symptoms and electrophysiological properties. Symptoms are partially responsive to temperature but not to drug therapy. In vitro trials of sodium channel blockers or temperature dependence might help predict treatment efficacy in PEPD.
Resumo:
Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs). However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs) and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV) was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands. CV was significantly lower in strands composed purely of SCMs (5.5 ± 1.5 cm/s, n = 11) as compared to PCMs (34.9 ± 2.9 cm/s, n = 21) at similar refractoriness (100% SCMs: 122 ± 25 ms, n = 9; 100% PCMs: 139 ± 67 ms, n = 14). In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV. These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.
Resumo:
Due to extensive clinical and electrophysiological overlaps, the correct diagnosis of disorders with excessive daytime sleepiness is often challenging. The aim of this study was to provide diagnostic measures that help discriminating such disorders, and to identify parameters, which don't. In this single-center study, we retrospectively identified consecutive treatment-naïve patients who suffered from excessive daytime sleepiness, and analyzed clinical and electrophysiological measures in those patients in whom a doubtless final diagnosis could be made. Of 588 patients, 287 reported subjective excessive daytime sleepiness. Obstructive sleep apnea is the only disorder that could be identified by polysomnography alone. The diagnosis of insufficient sleep syndrome relies on actigraphy as patients underestimate their sleep need and the disorder shares several clinical and electrophysiological properties with both narcolepsy type 1 and idiopathic hypersomnia. Sleep stage sequencing on MSLT appears helpful to discriminate between insufficient sleep syndrome and narcolepsy. Sleep inertia is a strong indicator for idiopathic hypersomnia. There are no distinctive electrophysiological findings for the diagnosis of restless legs syndrome. Altogether, EDS disorders are common in neurological sleep laboratories, but usually cannot be diagnosed based on PSG and MSLT findings alone. The diagnostic value of actigraphy recordings can hardly be overestimated.