9 resultados para ELECTRON-PROBE MICROANALYSIS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The significance of the multi-isotopic record preserved in K-feldspars is assessed on samples from the Aar metagranite, Central Alps, Switzerland having very tight independent geological constraints. Stepwise leaching reveals that two diachronically grown K-feldspar generations coexist: Kfs-1 (≥ 35 Ma old, Ca-poor, Rb-Cl-rich, with low 87Sr/86Sr and high 206Pb/204Pb) and Kfs-2 (≤ 10 Ma old, antithetic isotopic signatures deriving from external fluids). Microtextures imaged by cathodoluminescence, backscattered electrons, and electron probe microanalysis are patchy and chemically heterogeneous, with pronounced enrichments in Ba in the retrogressed regions. This confirms the simultaneous presence of fluid-dominated retrogression and recrystallization and isotopic inheritance. The staircase-shaped 40Ar/39Ar age spectrum correlates with the Ca/K and Cl/K signatures. This reflects a mixture of heterochemical K-feldspar generations, and not an intracrystalline Ar gradient caused by diffusion. The shape of the age spectrum and the in vacuo release kinetics proceed from entirely different physical and geological phenomena. What K-feldspars can be effectively used for is to constrain the timing of the fluids that interacted with them by multi-isotopic analyses, rather than to model a “cooling history” from 39Ar release alone. The identification of multiple mineral generations by imaging combined with multi-isotopic analysis enables the accurate dating of the events of a multistage evolution after the initial crystallization of the rock in which the minerals occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

K-feldspar (Kfs) from the Chain of Ponds Pluton (CPP) is the archetypal reference material, on which thermochronological modeling of Ar diffusion in discrete “domains” was founded. We re-examine the CPP Kfs using cathodoluminescence and back-scattered electron imaging, transmission electron microscopy, and electron probe microanalysis. 40Ar/39Ar stepwise heating experiments on different sieve fractions, and on handpicked and unpicked aliquots, are compared. Our results reproduce the staircase-shaped age spectrum and the Arrhenius trajectory of the literature sample, confirming that samples collected from the same locality have an identical Ar isotope record. Even the most pristine-looking Kfs from the CPP contains successive generations of secondary, metasomatic/retrograde mineral replacements that post-date magmatic crystallization. These chemically and chronologically distinct phases are responsible for its staircase-shaped age spectra, which are modified by handpicking. While genuine within-grain diffusion gradients are not ruled out by these data, this study demonstrates that the most important control on staircase-shaped age spectra is the simultaneous presence of heterochemical, diachronous post-magmatic mineral growth. At least five distinct mineral species were identified in the Kfs separate, three of which can be traced to external fluids interacting with the CPP in a chemically open system. Sieve fractions have size-shifted Arrhenius trajectories, negating the existence of the smallest “diffusion domains”. Heterochemical phases also play an important role in producing non-linear trajectories. In vacuo degassing rates recovered from Arrhenius plots are neither related to true Fick’s Law diffusion nor to the staircase shape of the age spectra. The CPP Kfs used to define the "diffusion domain" model demonstrates the predominance of metasomatic alteration by hydrothermal fluids and recrystallization in establishing the natural Ar distribution amongst different coexisting phases that gives rise to the staircase-shaped age spectrum. Microbeam imaging of textures is as essential for 40Ar-39Ar hygrochronology as it is for U-Pb geochronology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium in- quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 lg g-1),Al (154 ± 15 lg g-1), Li (30 ± 2 lg g-1), Fe (2.2 ± 0.3 lg g-1), Mn (0.34 ± 0.04 lg g-1), Ge (1.7 ± 0.2 lg g-1) and Ga (0.020 ± 0.002 lg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. oncentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A transmission electron microscope (TEM) accessory, the energy filter, enables the establishment of a method for elemental microanalysis, the electron energy-loss spectroscopy (EELS). In conventional TEM, unscattered, elastic, and inelastic scattered electrons contribute to image information. Energy-filtering TEM (EFTEM) allows elemental analysis at the ultrastructural level by using selected inelastic scattered electrons. EELS is an excellent method for elemental microanalysis and nanoanalysis with good sensitivity and accuracy. However, it is a complex method whose potential is seldom completely exploited, especially for biological specimens. In addition to spectral analysis, parallel-EELS, we present two different imaging techniques in this chapter, namely electron spectroscopic imaging (ESI) and image-EELS. We aim to introduce these techniques in this chapter with the elemental microanalysis of titanium. Ultrafine, 22-nm titanium dioxide particles are used in an inhalation study in rats to investigate the distribution of nanoparticles in lung tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A measurement of angular correlations in Drell-Yan lepton pairs via the phi(eta)* observable is presented. This variable probes the same physics as the Z/gamma* boson transverse momentum with a better experimental resolution. The Z/gamma* -> e(+)e(-) and Z/gamma* -> mu(+)mu(-) decays produced in proton-proton collisions at a centre-of-mass energy of root s = 7 TeV are used. The data were collected with the ATLAS detector at the LHC and correspond to an integrated luminosity of 4.6 fb(-1). Normalised differential cross sections as a function of phi(eta)* are measured separately for electron and muon decay channels. These channels are then combined for improved accuracy. The cross section is also measured double differentially as a function of phi(eta)* for three independent bins of the Z boson rapidity. The results are compared to QCD calculations and to predictions from different Monte Carlo event generators. The data are reasonably well described, in all measured Z boson rapidity regions, by resummed QCD predictions combined with fixed-order perturbative QCD calculations or by some Monte Carlo event generators. The measurement precision is typically better by one order of magnitude than present theoretical uncertainties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the contrast formation in the local contact potential difference (LCPD) measured by Kelvin probe force microscopy (KPFM) on single charge-transfer complexes (CTCs) on a NaCl bilayer on Cu(111). At different tip heights, we found quantitatively different LCPD contrasts that characterize different properties of the molecule. In the small distance regime, the tip penetrates the electron density of the molecule, and the contrast is related to the size and topography of the electron shell of the molecule. For larger distances, the LCPD contrast corresponds to the electrostatic field above the molecule. However, in the medium-distance regime, that is, for tip heights similar to the size of the molecule, the nonspherical distribution of π- and σ-electrons often conceals the effect of the partial charges within the molecule. Only for large distances does the LCPD map converge toward the simple field of a dipole for a polar molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of the interesting physics processes to be measured at the LHC have a signature involving one or more isolated electrons. The electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton–proton collision data collected in 2011 at √s = 7 TeV and corresponding to an integrated luminosity of 4.7 fb−1. Tag-and-probe methods using events with leptonic decays of W and Z bosons and J/ψ mesons are employed to benchmark these performance parameters. The combination of all measurements results in identification efficiencies determined with an accuracy at the few per mil level for electron transverse energy greater than 30 GeV.