5 resultados para ECR

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Computer-based feedback systems for assessing the quality of cardiopulmonary resuscitation (CPR) are widely used these days. Recordings usually involve compression and ventilation dependent variables. Thorax compression depth, sufficient decompression and correct hand position are displayed but interpreted independently of one another. We aimed to generate a parameter, which represents all the combined relevant parameters of compression to provide a rapid assessment of the quality of chest compression-the effective compression ratio (ECR). METHODS: The following parameters were used to determine the ECR: compression depth, correct hand position, correct decompression and the proportion of time used for chest compressions compared to the total time spent on CPR. Based on the ERC guidelines, we calculated that guideline compliant CPR (30:2) has a minimum ECR of 0.79. To calculate the ECR, we expanded the previously described software solution. In order to demonstrate the usefulness of the new ECR-parameter, we first performed a PubMed search for studies that included correct compression and no-flow time, after which we calculated the new parameter, the ECR. RESULTS: The PubMed search revealed 9 trials. Calculated ECR values ranged between 0.03 (for basic life support [BLS] study, two helpers, no feedback) and 0.67 (BLS with feedback from the 6th minute). CONCLUSION: ECR enables rapid, meaningful assessment of CPR and simplifies the comparability of studies as well as the individual performance of trainees. The structure of the software solution allows it to be easily adapted to any manikin, CPR feedback devices and different resuscitation guidelines (e.g. ILCOR, ERC).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Resuscitation guidelines encourage the use of cardiopulmonary resuscitation (CPR) feedback devices implying better outcomes after sudden cardiac arrest. Whether effective continuous feedback could also be given verbally by a second rescuer ("human feedback") has not been investigated yet. We, therefore, compared the effect of human feedback to a CPR feedback device. METHODS In an open, prospective, randomised, controlled trial, we compared CPR performance of three groups of medical students in a two-rescuer scenario. Group "sCPR" was taught standard BLS without continuous feedback, serving as control. Group "mfCPR" was taught BLS with mechanical audio-visual feedback (HeartStart MRx with Q-CPR-Technology™). Group "hfCPR" was taught standard BLS with human feedback. Afterwards, 326 medical students performed two-rescuer BLS on a manikin for 8 min. CPR quality parameters, such as "effective compression ratio" (ECR: compressions with correct hand position, depth and complete decompression multiplied by flow-time fraction), and other compression, ventilation and time-related parameters were assessed for all groups. RESULTS ECR was comparable between the hfCPR and the mfCPR group (0.33 vs. 0.35, p = 0.435). The hfCPR group needed less time until starting chest compressions (2 vs. 8 s, p < 0.001) and showed fewer incorrect decompressions (26 vs. 33 %, p = 0.044). On the other hand, absolute hands-off time was higher in the hfCPR group (67 vs. 60 s, p = 0.021). CONCLUSIONS The quality of CPR with human feedback or by using a mechanical audio-visual feedback device was similar. Further studies should investigate whether extended human feedback training could further increase CPR quality at comparable costs for training.