185 resultados para ECOTYPIC DIFFERENTIATION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The relative importance of ecological selection and geographical isolation in promoting and constraining genetic and phenotypic differentiation among populations is not always obvious. Interacting with divergent selection, restricted opportunity for gene flow may in some cases be as much a cause as a consequence of adaptation, with the latter being a hallmark of ecologi- cal speciation. Ecological speciation is well studied in parts of the native range of the three-spined stickleback. Here, we study this process in a recently invaded part of its range. Switzerland was colonized within the past 140 years from at least three different colonization events involving differ- ent stickleback lineages. They now occupy diverse habitats, ranging from small streams to the pelagic zone of large lakes. We use replicated systems of parapatric lake and stream populations, some of which trace their origins to different invasive lineages, to ask (i) whether phenotypic divergence occurred among populations inhabiting distinct habitats, (ii) whether trajec- tories of phenotypic divergence follow predictable parallel patterns and (iii) whether gene flow constrains divergent adaptation or vice versa. We find consistent phenotypic divergence between populations occupying distinct habitats. This involves parallel evolution in several traits with known eco- logical relevance in independent evolutionary lineages. Adaptive divergence supersedes homogenizing gene flow even at a small spatial scale. We find evidence that adaptive phenotypic divergence places constraints on gene flow over and above that imposed by geographical distance, signalling the early onset of ecological speciation.
Resumo:
Although rapid phenotypic evolution during range expansion associated with colonization of contrasting habitats has been documented in several taxa, the evolutionary mechanisms that underlie such phenotypic divergence have less often been investigated. A strong candidate for rapid ecotype formation within an invaded range is the three-spine stickleback in the Lake Geneva region of central Europe. Since its introduction only about 140 years ago, it has undergone a significant expansion of its range and its niche, now forming phenotypically differentiated parapatric ecotypes that occupy either the pelagic zone of the large lake or small inlet streams, respectively. By comparing museum collections from different times with contemporary population samples, we here reconstruct the evolution of parapatric phenotypic divergence through time. Using genetic data from modern samples, we infer the underlying invasion history. We find that parapatric habitat-dependent phenotypic divergence between the lake and stream was already present in the first half of the twentieth century, but the magnitude of differentiation increased through time, particularly in antipredator defence traits. This suggests that divergent selection between the habitats occurred and was stable through much of the time since colonization. Recently, increased phenotypic differentiation in antipredator defence traits likely results from habitat-dependent selection on alleles that arrived through introgression from a distantly related lineage from outside the Lake Geneva region. This illustrates how hybridization can quickly promote phenotypic divergence in a system where adaptation from standing genetic variation was constrained.
Resumo:
A differentiation towards myoepithelial cells has been demonstrated in several types of lesions in the breast. These include multifocal myoepitheliomatosis, the rare mixed tumor or pleomorphic adenoma, adenoid cystic carcinoma, adenomyoepithelioma and myoepithelial carcinoma (malignant myoepithelioma). Myoepithelial carcinoma is the only lesion purely composed of myoepithelial cells. All these tumors are benign and/or of low-grade malignancy, with the exception of malignant myoepithelioma. In contrast to the statement of the current World Health Organization (WHO), recent studies have reported that regional and distant metastases may occur in about 50% of pure myoepithelial carcinomas. The presented case of a breast carcinoma with dominant myoepithelial/spindle cell differentiation in a 58-year-old woman is an excellent example to document the highly aggressive biological behavior of this tumor phenotype. Despite an extensive chemotherapy and radiotherapy, the tumor was rapidly progressive, forming a finally exulcerating local tumor relapse and widespread metastases to the myocardium, lungs, liver, kidneys and skin. Similarities in morphology and biological behavior compared to patients with "triple-negative" (hormone receptor and Her2) monophasic sarcomatoid carcinomas and pure spindle cell sarcomas are discussed.
Resumo:
Acute promyelocytic leukaemia (APL) patients are successfully treated with all-trans retinoic acid (ATRA). However, concurrent chemotherapy is still necessary and less toxic therapeutic approaches are needed. Earlier studies suggested that in haematopoietic neoplasms, the green tea polyphenol epigallocatechin-3-gallate (EGCG) induces cell death without adversely affecting healthy cells. We aimed at deciphering the molecular mechanism of EGCG-induced cell death in acute myeloid leukaemia (AML). A significant increase of death-associated protein kinase 2 (DAPK2) levels was found in AML cells upon EGCG treatment paralleled by increased cell death that was significantly reduced upon silencing of DAPK2. Moreover, combined ATRA and EGCG treatment resulted in cooperative DAPK2 induction and potentiated differentiation. EGCG toxicity of primary AML blasts correlated with 67 kDa laminin receptor (67LR) expression. Pretreatment of AML cells with ATRA, causing downregulation of 67LR, rendered these cells resistant to EGCG-mediated cell death. In summary, it was found that (i) DAPK2 is essential for EGCG-induced cell death in AML cells, (ii) ATRA and EGCG cotreatment significantly boosted neutrophil differentiation, and 67LR expression correlates with susceptibility of AML cells to EGCG. We thus suggest that EGCG, by selectively targeting leukaemic cells, may improve differentiation therapies for APL and chemotherapy for other AML subtypes.
Resumo:
Inhibitor of differentiation 1 (ID1) plays a role in cellular differentiation, proliferation, angiogenesis and tumor invasion. As shown recently, ID1 is positively regulated by the tyrosine kinase SRC in lung carcinoma cell lines and with that appears as a potential new therapeutic target in non-small cell carcinoma (NSCLC). To substantiate this hypothesis we examined ID1, SRC and matrix metalloproteinase-9 (MMP-9) immunohistochemically in human NSCLC specimens.
Resumo:
Purpose: To prospectively determine on T2 cartilage maps the effect of unloading during a clinical magnetic resonance (MR) examination in the postoperative follow-up of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the knee joint. Materials and Methods: Ethical approval for this study was provided by the local ethics commission, and written informed consent was obtained. Thirty patients (mean age, 35.4 years +/- 10.5) with a mean postoperative follow-up period of 29.1 months +/- 24.4 were enrolled. A multiecho spin-echo T2-weighted sequence was performed at the beginning (early unloading) and end (late unloading) of the MR examination, with an interval of 45 minutes. Mean and zonal region of interest T2 measurements were obtained in control cartilage and cartilage repair tissue. Statistical analysis of variance was performed. Results: The change in T2 values of control cartilage (early unloading, 50.2 msec +/- 8.4; late unloading, 51.3 msec +/- 8.5) was less pronounced than the change in T2 values of cartilage repair tissue (early unloading, 51.8 msec +/- 11.7; late unloading, 56.1 msec +/- 14.4) (P = .024). The difference between control cartilage and cartilage repair tissue was not significant for early unloading (P = .314) but was significant for late unloading (P = .036). Zonal T2 measurements revealed a higher dependency on unloading for the superficial cartilage layer. Conclusion: Our results suggest that T2 relaxation can be used to assess early and late unloading values of articular cartilage in a clinical setting and that the time point of the quantitative T2 measurement affects the differentiation between native and abnormal articular cartilage. (c) RSNA, 2010.
Resumo:
C-type lectin domain family 5, member A (CLEC5A), also known as myeloid DNAX activation protein 12 (DAP12)-associating lectin-1 (MDL-1), is a cell surface receptor strongly associated with the activation and differentiation of myeloid cells. CLEC5A associates with its adaptor protein DAP12 to activate a signaling cascade resulting in activation of downstream kinases in inflammatory responses. Currently, little is known about the transcriptional regulation of CLEC5A. We identified CLEC5A as one of the most highly induced genes in a microarray gene profiling experiment of PU.1 restored myeloid PU.1-null cells. We further report that CLEC5A expression is significantly reduced in several myeloid differentiation models upon PU.1 inhibition during monocyte/macrophage or granulocyte differentiation. In addition, CLEC5A mRNA expression was significantly lower in primary acute myeloid leukemia (AML) patient samples than in macrophages and granulocytes from healthy donors. Moreover, we found activation of a CLEC5A promoter reporter by PU.1 as well as in vivo binding of PU.1 to the CLEC5A promoter. Our findings indicate that CLEC5A expression in monocyte/macrophage and granulocytes is regulated by PU.1.
Resumo:
During development and regeneration of the mammalian nervous system, directional signals guide differentiating neurons toward their targets. Soluble neurotrophic molecules encode for preferential direction over long distances while the local topography is read by cells in a process requiring the establishment of focal adhesions. The mutual interaction between overlapping molecular and topographical signals introduces an additional level of control to this picture. The role of the substrate topography was demonstrated exploiting nanotechnologies to generate biomimetic scaffolds that control both the polarity of differentiating neurons and the alignment of their neurites. Here PC12 cells contacting nanogratings made of copolymer 2-norbornene ethylene (COC), were alternatively stimulated with Nerve Growth Factor, Forskolin, and 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic (8CPT-2Me-cAMP) or with a combination of them. Topographical guidance was differently modulated by the alternative stimulation protocols tested. Forskolin stimulation reduced the efficiency of neurite alignment to the nanogratings. This effect was linked to the inhibition of focal adhesion maturation. Modulation of neurite alignment and focal adhesion maturation upon Forskolin stimulation depended on the activation of the MEK/ERK signaling but were PkA independent. Altogether, our results demonstrate that topographical guidance in PC12 cells is modulated by the activation of alternative neuronal differentiation pathways.
Resumo:
Objective: Central to the process of osseointegration is the recruitment of mesenchymal progenitor cells to the healing site, their proliferation and differentiation to bone synthesising osteoblasts. The process is under the control of pro-inflammatory cytokines and growth factors. The aim of this study was to monitor these key stages of osseointegration and the signalling milieu during bone healing around implants placed in healthy and diabetic bone. Methods: Implants were placed into the sockets of incisors extracted from the mandibles of normal Wistar and diabetic Goto-Kakizaki rats. Mandibles 1-12 weeks post-insertion of the implant were examined by histochemistry and immunocytochemistry to localise the presence of Stro-1- positive mesenchymal progenitor cells, proliferating cellular nuclear antigen proliferative cells, osteopontin and osteocalcin, macrophages, pro-inflammatory cytokines interleukin (IL)-1 , IL-6, tumour necrosis factor (TNF)- and tumour growth factor (TGF)- 1. Image analysis provided a semi-quantification of positively expressing cells. Results: Histological staining identified a delay in the formation of mineralised bone around implants placed in diabetic animals. Within the diabetic bone, the migration of Stro-1 mesenchymal cells in the healing tissue appeared to be unaffected. However, in the diabetic healing bone, the onset of cell proliferation and osteoblast differentiation were delayed and subsequently prolonged compared with normal bone. Similar patterns of change were observed in diabetic bone for the presence of IL-1 , TNF- , macrophages and TGF- 1. Conclusion: The observed alterations in the extracellular presence of pro-inflammatory cytokines, macrophages and growth factors within diabetic tissues that correlate to changes in the signalling milieu, may affect the proliferation and differentiation of mesenchymal progenitor cells in the osseointegration process. To cite this article: Colombo JS, Balani D, Sloan AJ, St Crean J, Okazaki J, Waddington RJ. Delayed osteoblast differentiation and altered inflammatory response around implants placed in incisor sockets of type 2 diabetic rats Clin. Oral Impl. Res22, 2011; 578-586 doi: 10.1111/j.1600-0501.2010.01992.x.
Resumo:
To evaluate the capability of spectral computed tomography (CT) to improve the characterization of cystic high-attenuation lesions in a renal phantom and to test the hypothesis that spectral CT will improve the differentiation of cystic renal lesions with high protein content and those that have undergone hemorrhage or malignant contrast-enhancing transformation.