8 resultados para ECG Online Prediction
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Left anterior hemiblock (LAHB) is the most frequent conduction abnormality, but its impact on the diagnostic accuracy of the exercise ECG has not been studied. The aim of our study was to determine the diagnostic accuracy of ST depression for predicting ischaemia in the presence of LAHB. PATIENTS: Consecutive patients with known or suspected coronary heart disease undergoing exercise ECG and 99mTc-sestamibi single photon emission computed tomography (SPECT) were included in the analysis. Patients with left bundle branch block, with changes in QRS morphology related to myocardial infarction, and patients who had undergone pharmacological stress testing were excluded. RESULTS: Of 1532 patients assessed, 567 patients qualified for the analysis. In 69 patients with LAHB, ECG stress testing had lower sensitivity (38% vs 86%) and lower negative predictive value (82% vs 92%) than in patients with normal baseline ECG. The reduction of sensitivity appeared to be similar in patients with isolated LAHB (n=43), in patients with right bundle branch block (n=39), and with bifascicular block (n=26). In contrast, the positive predictive value of the test was excellent. CONCLUSION: The diagnostic accuracy of the exercise ECG for prediction of ischaemia is reduced in patients with LAHB.
Resumo:
In populations of older adults, prediction of coronary heart disease (CHD) events through traditional risk factors is less accurate than in middle-aged adults. Electrocardiographic (ECG) abnormalities are common in older adults and might be of value for CHD prediction.
Resumo:
Article preview View full access options BoneKEy Reports | Review Print Email Share/bookmark Finite element analysis for prediction of bone strength Philippe K Zysset, Enrico Dall'Ara, Peter Varga & Dieter H Pahr Affiliations Corresponding author BoneKEy Reports (2013) 2, Article number: 386 (2013) doi:10.1038/bonekey.2013.120 Received 03 January 2013 Accepted 25 June 2013 Published online 07 August 2013 Article tools Citation Reprints Rights & permissions Abstract Abstract• References• Author information Finite element (FE) analysis has been applied for the past 40 years to simulate the mechanical behavior of bone. Although several validation studies have been performed on specific anatomical sites and load cases, this study aims to review the predictability of human bone strength at the three major osteoporotic fracture sites quantified in recently completed in vitro studies at our former institute. Specifically, the performance of FE analysis based on clinical computer tomography (QCT) is compared with the ones of the current densitometric standards, bone mineral content, bone mineral density (BMD) and areal BMD (aBMD). Clinical fractures were produced in monotonic axial compression of the distal radii, vertebral sections and in side loading of the proximal femora. QCT-based FE models of the three bones were developed to simulate as closely as possible the boundary conditions of each experiment. For all sites, the FE methodology exhibited the lowest errors and the highest correlations in predicting the experimental bone strength. Likely due to the improved CT image resolution, the quality of the FE prediction in the peripheral skeleton using high-resolution peripheral CT was superior to that in the axial skeleton with whole-body QCT. Because of its projective and scalar nature, the performance of aBMD in predicting bone strength depended on loading mode and was significantly inferior to FE in axial compression of radial or vertebral sections but not significantly inferior to FE in side loading of the femur. Considering the cumulated evidence from the published validation studies, it is concluded that FE models provide the most reliable surrogates of bone strength at any of the three fracture sites.
Resumo:
We present a technique for online compression of ECG signals using the Golomb-Rice encoding algorithm. This is facilitated by a novel time encoding asynchronous analog-to-digital converter targeted for low-power, implantable, long-term bio-medical sensing applications. In contrast to capturing the actual signal (voltage) values the asynchronous time encoder captures and encodes the time information at which predefined changes occur in the signal thereby minimizing the sensor's energy use and the number of bits we store to represent the information by not capturing unnecessary samples. The time encoder transforms the ECG signal data to pure time information that has a geometric distribution such that the Golomb-Rice encoding algorithm can be used to further compress the data. An overall online compression rate of about 6 times is achievable without the usual computations associated with most compression methods.
An Early-Warning System for Hypo-/Hyperglycemic Events Based on Fusion of Adaptive Prediction Models
Resumo:
Introduction: Early warning of future hypoglycemic and hyperglycemic events can improve the safety of type 1 diabetes mellitus (T1DM) patients. The aim of this study is to design and evaluate a hypoglycemia / hyperglycemia early warning system (EWS) for T1DM patients under sensor-augmented pump (SAP) therapy. Methods: The EWS is based on the combination of data-driven online adaptive prediction models and a warning algorithm. Three modeling approaches have been investigated: (i) autoregressive (ARX) models, (ii) auto-regressive with an output correction module (cARX) models, and (iii) recurrent neural network (RNN) models. The warning algorithm performs postprocessing of the models′ outputs and issues alerts if upcoming hypoglycemic/hyperglycemic events are detected. Fusion of the cARX and RNN models, due to their complementary prediction performances, resulted in the hybrid autoregressive with an output correction module/recurrent neural network (cARN)-based EWS. Results: The EWS was evaluated on 23 T1DM patients under SAP therapy. The ARX-based system achieved hypoglycemic (hyperglycemic) event prediction with median values of accuracy of 100.0% (100.0%), detection time of 10.0 (8.0) min, and daily false alarms of 0.7 (0.5). The respective values for the cARX-based system were 100.0% (100.0%), 17.5 (14.8) min, and 1.5 (1.3) and, for the RNN-based system, were 100.0% (92.0%), 8.4 (7.0) min, and 0.1 (0.2). The hybrid cARN-based EWS presented outperforming results with 100.0% (100.0%) prediction accuracy, detection 16.7 (14.7) min in advance, and 0.8 (0.8) daily false alarms. Conclusion: Combined use of cARX and RNN models for the development of an EWS outperformed the single use of each model, achieving accurate and prompt event prediction with few false alarms, thus providing increased safety and comfort.
Resumo:
The value of electrocardiographic findings predicting adverse outcome in patients with arrhythmogenic right ventricular dysplasia (ARVD) is not well known. We hypothesized that ventricular depolarization and repolarization abnormalities on the 12-lead surface electrocardiogram (ECG) predict adverse outcome in patients with ARVD. ECGs of 111 patients screened for the 2010 ARVD Task Force Criteria from 3 Swiss tertiary care centers were digitized and analyzed with a digital caliper by 2 independent observers blinded to the outcome. ECGs were compared in 2 patient groups: (1) patients with major adverse cardiovascular events (MACE: a composite of cardiac death, heart transplantation, survived sudden cardiac death, ventricular fibrillation, sustained ventricular tachycardia, or arrhythmic syncope) and (2) all remaining patients. A total of 51 patients (46%) experienced MACE during a follow-up period with median of 4.6 years (interquartile range 1.8 to 10.0). Kaplan-Meier analysis revealed reduced times to MACE for patients with repolarization abnormalities according to Task Force Criteria (p = 0.009), a precordial QRS amplitude ratio (∑QRS mV V1 to V3/∑QRS mV V1 to V6) of ≤ 0.48 (p = 0.019), and QRS fragmentation (p = 0.045). In multivariable Cox regression, a precordial QRS amplitude ratio of ≤ 0.48 (hazard ratio [HR] 2.92, 95% confidence interval [CI] 1.39 to 6.15, p = 0.005), inferior leads T-wave inversions (HR 2.44, 95% CI 1.15 to 5.18, p = 0.020), and QRS fragmentation (HR 2.65, 95% CI 1.1 to 6.34, p = 0.029) remained as independent predictors of MACE. In conclusion, in this multicenter, observational, long-term study, electrocardiographic findings were useful for risk stratification in patients with ARVD, with repolarization criteria, inferior leads TWI, a precordial QRS amplitude ratio of ≤ 0.48, and QRS fragmentation constituting valuable variables to predict adverse outcome.
Resumo:
Asynchronous level crossing sampling analog-to-digital converters (ADCs) are known to be more energy efficient and produce fewer samples than their equidistantly sampling counterparts. However, as the required threshold voltage is lowered, the number of samples and, in turn, the data rate and the energy consumed by the overall system increases. In this paper, we present a cubic Hermitian vector-based technique for online compression of asynchronously sampled electrocardiogram signals. The proposed method is computationally efficient data compression. The algorithm has complexity O(n), thus well suited for asynchronous ADCs. Our algorithm requires no data buffering, maintaining the energy advantage of asynchronous ADCs. The proposed method of compression has a compression ratio of up to 90% with achievable percentage root-mean-square difference ratios as a low as 0.97. The algorithm preserves the superior feature-to-feature timing accuracy of asynchronously sampled signals. These advantages are achieved in a computationally efficient manner since algorithm boundary parameters for the signals are extracted a priori.