70 resultados para E. COLI
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The diagnostic yield of prosthetic joint-associated infection is hampered by the phenotypic change of bacteria into a sessile and resistant form, also called biofilm. With sonication, adherent bacteria can be dislodged from the prosthesis. Species identification may be difficult because of their variations in phenotypic appearance and biochemical reaction. We have studied the phenotypic, genotypic, and biochemical properties of Escherichia coli variants isolated from a periprosthetic joint infection. The strains were collected from synovial fluid, periprosthetic tissue, and fluid from the explanted and sonicated prosthesis. Isolates from synovial fluid revealed a normal phenotype, whereas a few variants from periprosthetic tissue and all isolates from sonication fluid showed different morphological features (including small-colony variants). All isolates from sonication fluid were beta-galactosidase negative and nonmotile; most were indole negative. Because of further variations in biochemical properties, species identification was false or not possible in 50% of the isolates included in this study. In contrast to normal phenotypes, variants were resistant to aminoglycosides. Typing of the isolates using pulsed-field gel electrophoresis yielded nonidentical banding patterns, but all strains were assigned to the same clonal origin when compared with 207 unrelated E. coli isolates. The bacteria were repeatedly passaged on culture media and reanalyzed. Thereafter, most variants reverted to normal phenotype and regained their motility and certain biochemical properties. In addition, some variants displayed aminoglycoside susceptibility after reversion. Sonication of an explanted prosthesis allows insight into the lifestyle of bacteria in biofilms. Since sonication fluid also reveals dislodged sessile forms, species identification of such variants may be misleading.
Resumo:
The pathway of copper entry into Escherichia coli is still unknown. In an attempt to shed light on this process, a lux-based biosensor was utilized to monitor intracellular copper levels in situ. From a transposon-mutagenized library, strains were selected in which copper entry into cells was reduced, apparent as clones with reduced luminescence when grown in the presence of copper (low-glowers). One low-glower had a transposon insertion in the comR gene, which encodes a TetR-like transcriptional regulator. The mutant strain could be complemented by the comR gene on a plasmid, restoring luminescence to wild-type levels. ComR did not regulate its own expression, but was required for copper-induction of the neighboring, divergently transcribed comC gene, as shown by real-time quantitative PCR and with a promoter-lux fusion. The purified ComR regulator bound to the promoter region of the comC gene in vitro and was released by copper. By membrane fractionation, ComC was shown to be localized in the outer membrane. When grown in the presence of copper, ∆comC cells had higher periplasmic and cytoplasmic copper levels, compared to the wild-type, as assessed by the activation of the periplasmic CusRS sensor and the cytoplasmic CueR sensor, respectively. Thus, ComC is an outer membrane protein which lowers the permeability of the outer membrane to copper. The expression of ComC is controlled by ComR, a novel, TetR-like copper-responsive repressor.
Resumo:
The glucose transporter IICB of the Escherichia coli phosphotransferase system (PTS) consists of a polytopic membrane domain (IIC) responsible for substrate transport and a hydrophilic C-terminal domain (IIB) responsible for substrate phosphorylation. We have overexpressed and purified a triple mutant of IIC (mut-IIC), which had recently been shown to be suitable for crystallization purposes. Mut-IIC was homodimeric as determined by blue native-PAGE and gel-filtration, and had an eyeglasses-like structure as shown by negative-stain transmission electron microscopy (TEM) and single particle analysis. Glucose binding and transport by mut-IIC, mut-IICB and wildtype-IICB were compared with scintillation proximity and in vivo transport assays. Binding was reduced and transport was impaired by the triple mutation. The scintillation proximity assay allowed determination of substrate binding, affinity and specificity of wildtype-IICB by a direct method. 2D crystallization of mut-IIC yielded highly-ordered tubular crystals and made possible the calculation of a projection structure at 12Å resolution by negative-stain TEM. Immunogold labeling TEM revealed the sidedness of the tubular crystals, and high-resolution atomic force microscopy the surface structure of mut-IIC. This work presents the structure of a glucose PTS transporter at the highest resolution achieved so far and sets the basis for future structural studies.
Resumo:
Ileal lesions in Crohn's disease (CD) patients are colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to adhere to and invade intestinal epithelial cells (IEC), and to survive within macrophages. The interaction of AIEC with IEC depends on bacterial factors mainly type 1 pili, flagella, and outer membrane proteins. In humans, proteases can act as host defence mechanisms to counteract bacterial colonization. The protease meprin, composed of multimeric complexes of the two subunits alpha and beta, is abundantly expressed in IECs. Decreased levels of this protease correlate with the severity of the inflammation in patients with inflammatory bowel disease. The aim of the present study was to analyze the ability of meprin to modulate the interaction of AIEC with IECs. In patients with ileal CD we observed decreased levels of meprins, in particular that of meprin β. Dose-dependent inhibition of the abilities of AIEC strain LF82 to adhere to and invade intestinal epithelial T84 cells was observed when bacteria were pre-treated with both exogenous meprin α and meprin β. Dose-dependent proteolytic degradation of type 1 pili was observed in the presence of active meprins, but not with heat-inactivated meprins, and pretreatment of AIEC bacteria with meprins impaired their ability to bind mannosylated host receptors and led to decreased secretion of the pro-inflammatory cytokine IL-8 by infected T84 cells. Thus, decreased levels of protective meprins as observed in CD patients may contribute to increased AIEC colonization.
Resumo:
BACKGROUND: During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection. METHODS: Primary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture. RESULTS: Comparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele 'Q' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele 'q'. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways 'dendritic cell maturation' and 'acute phase response signaling', whereas cell culture affected biological processes involved in 'cellular development'. CONCLUSIONS: The results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.
Resumo:
OBJECTIVES: The protozoan parasite Giardia lamblia causes the intestinal disease giardiasis, which may lead to acute and chronic diarrhoea in humans and various animal species. For treatment of this disease, several drugs such as the benzimidazole albendazole, the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are currently in use. Previously, a G. lamblia nitroreductase 1 (GlNR1) was identified as a nitazoxanide-binding protein. The aim of the present project was to elucidate the role of this enzyme in the mode of action of the nitro drugs nitazoxanide and metronidazole. METHODS: Recombinant GlNR1 was overexpressed in both G. lamblia and Escherichia coli (strain BL21). The susceptibility of the transfected bacterial and giardial cell lines to nitazoxanide and metronidazole was analysed. RESULTS: G. lamblia trophozoites overexpressing GlNR1 had a higher susceptibility to both nitro drugs. E. coli were fully resistant to nitazoxanide under both aerobic and semi-aerobic growth conditions. When grown semi-aerobically, bacteria overexpressing GlNR1 became susceptible to nitazoxanide. CONCLUSIONS: These findings suggest that GlNR1 activates nitro drugs via reduction yielding a cytotoxic product.
Resumo:
The aim of this study was to determine the potential association between housing type and multiple drug resistance (MDR) in Escherichia coli and Enterococcus faecalis isolates recovered from 283 laying-hen flocks. In each flock, a cloacal swab from four hens was collected and produced 1102 E. coli and 792 E. faecalis isolates. Broth microdilution was used to test susceptibility to antimicrobials. Country and housing type interacted differently with the MDR levels of both species. In the E. coli model, housing in a raised-floor system was associated with an increased risk of MDR compared to the conventional battery system [ odds ratio (OR) 2.12, 95% confidence interval (CI) 1.13-3.97)]. In the E. faecalis model the MDR levels were lower in free-range systems than in conventional battery cages (OR 0.51, 95% CI 0.27-0.94). In Belgium, ceftiofur-resistant E. coli isolates were more numerous than in the other countries.
Resumo:
We tested the use of multiplex real-time PCR for detection and quantification of Campylobacter jejuni and Campylobacter coli on broiler carcass neck skin samples collected during 2008 from slaughterhouses in Switzerland. Results from an established TaqMan assay based on two different targets (hipO and ceuE for C. jejuni and C. coli, respectively) were corroborated with data from a newly developed assay based on a single-nucleotide polymorphism in the fusA gene, which allows differentiation between C. jejuni and C. coli. Both multiplex real-time PCRs were applied simultaneously for direct detection, differentiation, and quantification of Campylobacter from 351 neck skin samples and compared with culture methods. There was good correlation in detection and enumeration between real-time PCR results and quantitative culture, with real-time PCR being more sensitive. Overall, 251 (71.5%) of the samples were PCR positive for Campylobacter, with 211 (60.1%) in the hipO-ceuE assays, 244 (69.5%) in the fusA assay, and 204 (58.1%) of them being positive in both PCR assays. Thus, the fusA assay was similarly sensitive to the enrichment culture (72.4% positive); however, it is faster and allows for quantification. In addition, real-time PCR allowed for species differentiation; roughly 60% of positive samples contained C. jejuni, less than 10% C. coli, and more than 30% contained both species. Real-time PCR proved to be a suitable method for direct detection, quantification, and differentiation of Campylobacter from carcasses, and could permit time-efficient surveillance of these zoonotic agents.
Resumo:
The herd prevalence of third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec) was determined for broilers (25.0% [95% confidence interval (CI) 17.6-33.7%]), pigs (3.3% [(95% CI 0.4-11.5%]), and cattle (3.9% [95% CI 0.5-13.5%]), using a sampling strategy that was representative of the livestock population slaughtered in Switzerland between October 2010 and April 2011. The 3GC-R-Ec isolates were characterized by the measurement of the MICs of various antibiotics, microarray analyses, analytical isoelectric focusing, polymerase chain reaction and DNA sequencing for bla genes, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing. CMY-2 (n = 12), CTX-M-1 (n = 11), SHV-12 (n = 5), TEM-52 (n = 3), CTX-M-15 (n = 2), and CTX-M-3 (n = 1) producers were found. The majority of CMY-2 producers fell into 1 PFGE cluster, which predominantly contained ST61, whereas the CTX-M types were carried by heterogeneous clones of E. coli, as shown by the numerous PFGE profiles and STs that were found. This is the first national Swiss study that focuses on the spread of 3GC-R Enterobacteriaceae among slaughtered animals.
Resumo:
An Escherichia coli isolate producing the CMY-2 β-lactamase was found in the milk of a cow with recurrent subclinical mastitis. The isolate was resistant to the antibiotics commonly used for intramammary mastitis treatment, such as penicillins, cephalosporins, β-lactam/β-lactamase inhibitor combinations, aminoglycosides, tetracyclines, and sulfonamides. This is the first report of a plasmid-mediated AmpC-producing Enterobacteriaceae in bovine milk.
Resumo:
This case describes evidence for a Shiga toxin-producing Escherichia coli (STEC) O146:H28 infection leading to hemolytic uremic syndrome in a neonate. STEC O146:H28 was linked hitherto with asymptomatic carriage in humans. Based on strain characteristics and genotyping data, the mother is a healthy carrier who transmitted the STEC during delivery. STEC strains belonging to the low-pathogenic STEC group must also be considered in the workup of neonatal hemolytic uremic syndrome.