4 resultados para Dynamical evolution

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims. We extend the results of planetary formation synthesis by computing the long-term evolution of synthetic systems from the clearing of the gas disk into the dynamical evolution phase. Methods. We use the symplectic integrator SyMBA to numerically integrate the orbits of planets for 100 Myr, using populations from previous studies as initial conditions. Results. We show that within the populations studied, mass and semimajor axis distributions experience only minor changes from post-formation evolution. We also show that, depending upon their initial distribution, planetary eccentricities can statistically increase or decrease as a result of gravitational interactions. We find that planetary masses and orbital spacings provided by planet formation models do not result in eccentricity distributions comparable to observed exoplanet eccentricities, requiring other phenomena, such as stellar fly-bys, to account for observed eccentricities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epilepsy has been historically seen as a functional brain disorder associated with excessive synchronization of large neuronal populations leading to a hypersynchronous state. Recent evidence showed that epileptiform phenomena, particularly seizures, result from complex interactions between neuronal networks characterized by heterogeneity of neuronal firing and dynamical evolution of synchronization. Desynchronization is often observed preceding seizures or during their early stages; in contrast, high levels of synchronization observed towards the end of seizures may facilitate termination. In this review we discuss cellular and network mechanisms responsible for such complex changes in synchronization. Recent work has identified cell-type-specific inhibitory and excitatory interactions, the dichotomy between neuronal firing and the non-local measurement of local field potentials distant to that firing, and the reflection of the neuronal dark matter problem in non-firing neurons active in seizures. These recent advances have challenged long-established views and are leading to a more rigorous and realistic understanding of the pathophysiology of epilepsy.