39 resultados para Dynamic mass transport

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a three-dimensional vertically-oriented fault zone, we consider the coupled effects of fluid flow, heat transfer and reactive mass transport, to investigate the patterns of fluid flow, temperature distribution, mineral alteration and chemically induced porosity changes. We show, analytically and numerically, that finger-like convection patterns can arise in a vertically-oriented fault zone. The onset and patterns of convective fluid flow are controlled by the Rayleigh number which is a function of the thermal properties of the fluid and the rock, the vertical temperature gradient, and the height and the permeability of the fault zone. Vigorous fluid flow causes low temperature gradients over a large region of the fault zone. In such a case, flow across lithological interfaces becomes the most important mechanism for the formation of sharp chemical reaction fronts. The degree of rock buffering, the extent and intensity of alteration, the alteration mineralogy and in some cases the formation of ore deposits are controlled by the magnitude of the flow velocity across these compositional interfaces in the rock. This indicates that alteration patterns along compositional boundaries in the rock may provide some insights into the convection pattern. The advective mass and heat exchanges between the fault zone and the wallrock depend on the permeability contrast between the fault zone and the wallrock. A high permeability contrast promotes focussed convective flow within the fault zone and diffusive exchange of heat and chemical reactants between the fault zone and the wallrock. However, a more gradual permeability change may lead to a regional-scale convective flow system where the flow pattern in the fault affects large-scale fluid flow, mass transport and chemical alteration in the wallrocks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, aerosol processes are widely used for the manufacture of nanoparticles (NPs), creating an increased occupational exposure risk of workers, laboratory personnel and scientists to airborne particles. There is evidence that possible adverse effects are linked with the accumulation of NPs in target cells, pointing out the importance of understanding the kinetics of particle internalization. In this context, the uptake kinetics of representative airborne NPs over 30 min and their internalization after 24 h post-exposure were investigated by the use of a recently established exposure system. This system combines the production of aerosolized cerium oxide (CeO(2)) NPs by flame spray synthesis with its simultaneous particle deposition from the gas-phase onto A549 lung cells, cultivated at the air-liquid interface. Particle uptake was quantified by mass spectrometry after several exposure times (0, 5, 10, 20 and 30 min). Over 35% of the deposited mass was found internalized after 10 min exposure, a value that increased to 60% after 30 min exposure. Following an additional 24 h post-incubation, a time span, after which adverse biological effects were observed in previous experiments, over 80% of total CeO(2) could be detected intracellularly. On the ultrastructural level, focal cerium aggregates were present on the apical surface of A549 cells and could also be localized intracellularly in vesicular structures. The uptake behaviour of aerosolized CeO(2) is in line with observations on cerium suspensions, where particle mass transport was identified as the rate-limiting factor for NP internalization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of mass movements in lake sediments provides insights into past natural hazards at historic and prehistoric timescales. Sediments from the deep basin of Lake Geneva reveal a succession of six large-scale (volumes of 22 × 106 to 250 × 106 m3) mass-transport deposits, associated with five mass-movement events within 2600 years (4000 cal bp to 563 ad). The mass-transport deposits result from: (i) lateral slope failures (mass-transport deposit B at 3895 ± 225 cal bp and mass-transport deposits A and C at 3683 ± 128 cal bp); and (ii) Rhône delta collapses (mass-transport deposits D to G dated at 2650 ± 150 cal bp, 2185 ± 85 cal bp, 1920 ± 120 cal bp and 563 ad, respectively). Mass-transport deposits A and C were most probably triggered by an earthquake, whereas the Rhône delta collapses were likely to be due to sediment overload with a rockfall as the external trigger (mass-transport deposit G, the Tauredunum event in 563 ad known from historical records), an earthquake (mass-transport deposit E) or unknown external triggers (mass-transport deposits D and F). Independent of their origin and trigger mechanisms, numerical simulations show that all of these recorded mass-transport deposits are large enough to have generated at least metre-scale tsunamis during mass movement initiation. Since the Tauredunum event in 563 ad, two small-scale (volumes of 1 to 2 × 106 m3) mass-transport deposits (H and I) are present in the seismic record, both of which are associated with small lateral slope failures. Mass-transport deposits H and I might be related to earthquakes in Lausanne/Geneva (possibly) 1322 ad and Aigle 1584 ad, respectively. The sedimentary record of the deep basin of Lake Geneva, in combination with the historical record, show that during the past 3695 years, at least six tsunamis were generated by mass movements, indicating that the tsunami hazard in the Lake Geneva region should not be neglected, although such events are not frequent with a recurrence time of 0·0016 yr−1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The time variable Earth’s gravity field provides the information about mass transport within the system Earth, i.e., the relationship of mass transport between atmosphere, oceans, and land hydrology. We recover the low-degree parameters of the time variable gravity field using microwave observations from GPS and GLONASS satellites and from SLR data to five geodetic satellites, namely LAGEOS-1/2, Starlette, Stella, and AJISAI. GPS satellites are particularly sensitive to specific coefficients of the Earth's gravity field, because of the deep 2:1 orbital resonance with Earth rotation (two revolutions of the GPS satellites per sidereal day). The resonant coefficients cause, among other, a “secular” drift (actually periodic variations of very long periods) of the semi-major axes of up to 5.3 m/day of GPS satellites. We processed 10 years of GPS and GLONASS data using the standard orbit models from the Center of Orbit Determination in Europe (CODE) with a simultaneous estimation of the Earth gravity field coefficients and other parameters, e.g., satellite orbit parameters, station coordinates, Earth rotation parameters, troposphere delays, etc. The weekly GNSS gravity solutions up to degree and order 4/4 are compared to the weekly SLR gravity field solutions. The SLR-derived geopotential coefficients are compared to monthly GRACE and CHAMP results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The time variable Earth’s gravity field contains information about the mass transport within the system Earth, i.e., the relationship between mass variations in the atmosphere, oceans, land hydrology, and ice sheets. For many years, satellite laser ranging (SLR) observations to geodetic satellites have provided valuable information of the low-degree coefficients of the Earth’s gravity field. Today, the Gravity Recovery and Climate Experiment (GRACE) mission is the major source of information for the time variable field of a high spatial resolution. We recover the low-degree coefficients of the time variable Earth’s gravity field using SLR observations up to nine geodetic satellites: LAGEOS-1, LAGEOS-2, Starlette, Stella, AJISAI, LARES, Larets, BLITS, and Beacon-C. We estimate monthly gravity field coefficients up to degree and order 10/10 for the time span 2003–2013 and we compare the results with the GRACE-derived gravity field coefficients. We show that not only degree-2 gravity field coefficients can be well determined from SLR, but also other coefficients up to degree 10 using the combination of short 1-day arcs for low orbiting satellites and 10-day arcs for LAGEOS-1/2. In this way, LAGEOS-1/2 allow recovering zonal terms, which are associated with long-term satellite orbit perturbations, whereas the tesseral and sectorial terms benefit most from low orbiting satellites, whose orbit modeling deficiencies are minimized due to short 1-day arcs. The amplitudes of the annual signal in the low-degree gravity field coefficients derived from SLR agree with GRACE K-band results at a level of 77 %. This implies that SLR has a great potential to fill the gap between the current GRACE and the future GRACE Follow-On mission for recovering of the seasonal variations and secular trends of the longest wavelengths in gravity field, which are associated with the large-scale mass transport in the system Earth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Subsurface fluid flow can be affected by earthquakes; increased spring activity, mud vol- cano eruptions, groundwater fluctuations, changes in geyser frequency, and other forms of altered subsurface fluid flow have been documented during, after, or even prior to seismic shaking. Recently discovered giant pockmarks on the bottom of Lake Neuchâtel, Switzerland, are the lake-floor expression of subsurface fluid flow. They discharge groundwater from the Jura Mountains karstic aquifers and experience episodically increased subsurface fluid flow documented by subsurface sediment mobilization deposits at the levees of the pockmarks. In this study, we present the spatio-temporal distribution of event deposits from these phases of sediment expulsion and of multiple time-correlative mass-transport deposits. We report five striking instances of concurrent multiple subsurface sediment deposits and multiple mass- transport deposits since late glacial times, for which we propose past earthquakes as a trigger. Comparison of this new event catalogue with historic earthquakes and other independent paleoseismic records suggests that initiation of sediment expulsion requires a minimum mac- roseismic intensity of VII. Thus, our study presents for the first time sedimentary deposits resulting from increased subsurface fluid flow as a paleoseismic proxy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ngm-3 and black carbon (BC) up to 17 μgm-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf/ was the dominant fraction of PM1, with the primary (POCnf/ and secondary (SOCnf/ fractions contributing 26–44% and 13–23% to the total carbon (TC), respectively. 5–8% of the TC had a primary fossil origin (POCf/, whereas the contribution of fossil secondary organic carbon (SOCf/ was 4–13 %. Nonfossil EC (ECnf/ and fossil EC (ECf/ ranged from 13–24 and 7–13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software is available, which simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. These dynamic models are based upon equations derived from the transport concepts such as electromigration, diffusion, electroosmosis and imposed hydrodynamic buffer flow that are applied to user-specified initial distributions of analytes and electrolytes. They are able to predict the evolution of electrolyte systems together with associated properties such as pH and conductivity profiles and are as such the most versatile tool to explore the fundamentals of electrokinetic separations and analyses. In addition to revealing the detailed mechanisms of fundamental phenomena that occur in electrophoretic separations, dynamic simulations are useful for educational purposes. This review includes a list of current high-resolution simulators, information on how a simulation is performed, simulation examples for zone electrophoresis, ITP, IEF and EKC and a comprehensive discussion of the applications and achievements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monte Carlo (MC) based dose calculations can compute dose distributions with an accuracy surpassing that of conventional algorithms used in radiotherapy, especially in regions of tissue inhomogeneities and surface discontinuities. The Swiss Monte Carlo Plan (SMCP) is a GUI-based framework for photon MC treatment planning (MCTP) interfaced to the Eclipse treatment planning system (TPS). As for any dose calculation algorithm, also the MCTP needs to be commissioned and validated before using the algorithm for clinical cases. Aim of this study is the investigation of a 6 MV beam for clinical situations within the framework of the SMCP. In this respect, all parts i.e. open fields and all the clinically available beam modifiers have to be configured so that the calculated dose distributions match the corresponding measurements. Dose distributions for the 6 MV beam were simulated in a water phantom using a phase space source above the beam modifiers. The VMC++ code was used for the radiation transport through the beam modifiers (jaws, wedges, block and multileaf collimator (MLC)) as well as for the calculation of the dose distributions within the phantom. The voxel size of the dose distributions was 2mm in all directions. The statistical uncertainty of the calculated dose distributions was below 0.4%. Simulated depth dose curves and dose profiles in terms of [Gy/MU] for static and dynamic fields were compared with the corresponding measurements using dose difference and γ analysis. For the dose difference criterion of ±1% of D(max) and the distance to agreement criterion of ±1 mm, the γ analysis showed an excellent agreement between measurements and simulations for all static open and MLC fields. The tuning of the density and the thickness for all hard wedges lead to an agreement with the corresponding measurements within 1% or 1mm. Similar results have been achieved for the block. For the validation of the tuned hard wedges, a very good agreement between calculated and measured dose distributions was achieved using a 1%/1mm criteria for the γ analysis. The calculated dose distributions of the enhanced dynamic wedges (10°, 15°, 20°, 25°, 30°, 45° and 60°) met the criteria of 1%/1mm when compared with the measurements for all situations considered. For the IMRT fields all compared measured dose values agreed with the calculated dose values within a 2% dose difference or within 1 mm distance. The SMCP has been successfully validated for a static and dynamic 6 MV photon beam, thus resulting in accurate dose calculations suitable for applications in clinical cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bidirectional ITP in fused-silica capillaries double-coated with Polybrene and poly-(vinylsulfonate) is a robust approach for analysis of low-molecular-mass compounds. EOF towards the cathode is strong (mobility >4.0 x 10(-8) m(2)/Vs) within the entire pH range investigated (2.40-8.08), dependent on ionic strength and buffer used and, at constant ionic strength, higher at alkaline pH. Electrokinetic separations and transport in such coated capillaries can be described with a dynamic computer model which permits the combined simulation of electrophoresis and electroosmosis in which the EOF is predicted either with a constant (i.e. pH- and ionic strength-independent) or a pH- and ionic strength-dependent electroosmotic mobility. Detector profiles predicted by computer simulation agree qualitatively well with bidirectional isotachopherograms that are monitored with a setup comprising two axial contactless conductivity detectors and a UV absorbance detector. The varying EOF predicted with a pH- and ionic strength-dependent electroosmotic mobility can be regarded as being realistic.