5 resultados para Dynamic Metrics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Mainstream IDEs such as Eclipse support developers in managing software projects mainly by offering static views of the source code. Such a static perspective neglects any information about runtime behavior. However, object-oriented programs heavily rely on polymorphism and late-binding, which makes them difficult to understand just based on their static structure. Developers thus resort to debuggers or profilers to study the system's dynamics. However, the information provided by these tools is volatile and hence cannot be exploited to ease the navigation of the source space. In this paper we present an approach to augment the static source perspective with dynamic metrics such as precise runtime type information, or memory and object allocation statistics. Dynamic metrics can leverage the understanding for the behavior and structure of a system. We rely on dynamic data gathering based on aspects to analyze running Java systems. By solving concrete use cases we illustrate how dynamic metrics directly available in the IDE are useful. We also comprehensively report on the efficiency of our approach to gather dynamic metrics.
Resumo:
Maintaining object-oriented systems that use inheritance and polymorphism is difficult, since runtime information, such as which methods are actually invoked at a call site, is not visible in the static source code. We have implemented Senseo, an Eclipse plugin enhancing Eclipse's static source views with various dynamic metrics, such as runtime types, the number of objects created, or the amount of memory allocated in particular methods.
Resumo:
Current advanced cloud infrastructure management solutions allow scheduling actions for dynamically changing the number of running virtual machines (VMs). This approach, however, does not guarantee that the scheduled number of VMs will properly handle the actual user generated workload, especially if the user utilization patterns will change. We propose using a dynamically generated scaling model for the VMs containing the services of the distributed applications, which is able to react to the variations in the number of application users. We answer the following question: How to dynamically decide how many services of each type are needed in order to handle a larger workload within the same time constraints? We describe a mechanism for dynamically composing the SLAs for controlling the scaling of distributed services by combining data analysis mechanisms with application benchmarking using multiple VM configurations. Based on processing of multiple application benchmarks generated data sets we discover a set of service monitoring metrics able to predict critical Service Level Agreement (SLA) parameters. By combining this set of predictor metrics with a heuristic for selecting the appropriate scaling-out paths for the services of distributed applications, we show how SLA scaling rules can be inferred and then used for controlling the runtime scale-in and scale-out of distributed services. We validate our architecture and models by performing scaling experiments with a distributed application representative for the enterprise class of information systems. We show how dynamically generated SLAs can be successfully used for controlling the management of distributed services scaling.
Resumo:
Mobile multimedia ad hoc services run on dynamic topologies due to node mobility or failures and wireless channel impairments. A robust routing service must adapt to topology changes with the aim of recovering or maintaining the video quality level and reducing the impact of the user's experience. In those scenarios, beacon-less Opportunistic Routing (OR) increases the robustness by supporting routing decisions in a completely distributed manner based on protocol-specific characteristics. However, the existing beacon-less OR approaches do not efficiently combine multiple metrics for forwarding selection, which cause higher packet loss rate, and consequently reduce the video quality level. In this paper, we assess the robustness and reliability of our recently developed OR protocol under node failures, called cross-layer Link quality and Geographical-aware OR protocol (LinGO). Simulation results show that LinGO achieves multimedia dissemination with QoE support and robustness in scenarios with dynamic topologies.
Resumo:
The delineation of shifting cultivation landscapes using remote sensing in mountainous regions is challenging. On the one hand, there are difficulties related to the distinction of forest and fallow forest classes as occurring in a shifting cultivation landscape in mountainous regions. On the other hand, the dynamic nature of the shifting cultivation system poses problems to the delineation of landscapes where shifting cultivation occurs. We present a two-step approach based on an object-oriented classification of Advanced Land Observing Satellite, Advanced Visible and Near-Infrared Spectrometer (ALOS AVNIR) and Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) data and landscape metrics. When including texture measures in the object-oriented classification, the accuracy of forest and fallow forest classes could be increased substantially. Based on such a classification, landscape metrics in the form of land cover class ratios enabled the identification of crop-fallow rotation characteristics of the shifting cultivation land use practice. By classifying and combining these landscape metrics, shifting cultivation landscapes could be delineated using a single land cover dataset.