20 resultados para Dryland
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Recent findings demonstrate that trees in deserts are efficient carbon sinks. It remains however unknown whether the Clean Development Mechanism will accelerate the planting of trees in Non Annex I dryland countries. We estimated the price of carbon at which a farmer would be indifferent between his customary activity and the planting of trees to trade carbon credits, along an aridity gradient. Carbon yields were simulated by means of the CO2FIX v3.1 model for Pinus halepensis with its respective yield classes along the gradient (Arid – 100mm to Dry Sub Humid conditions – 900mm). Wheat and pasture yields were predicted on somewhat similar nitrogen-based quadratic models, using 30 years of weather data to simulate moisture stress. Stochastic production, input and output prices were afterwards simulated on a Monte Carlo matrix. Results show that, despite the high levels of carbon uptake, carbon trading by afforesting is unprofitable anywhere along the gradient. Indeed, the price of carbon would have to raise unrealistically high, and the certification costs would have to drop significantly, to make the Clean Development Mechanism worthwhile for non annex I dryland countries farmers. From a government agency's point of view the Clean Development Mechanism is attractive. However, such agencies will find it difficult to demonstrate “additionality”, even if the rule may be somewhat flexible. Based on these findings, we will further discuss why the Clean Development Mechanism, a supposedly pro-poor instrument, fails to assist farmers in Non Annex I dryland countries living at minimum subsistence level.
Resumo:
Regime shifts, defined as a radical and persistent reconfiguration of an ecosystem following a disturbance, have been acknowledged by scientists as a very important aspect of the dynamic of ecosystems. However, their consideration in land management planning remains marginal and limited to specific processes and systems. Current research focuses on mathematical modeling and statistical analysis of spatio-temporal data for specific environmental variables. These methods do not fulfill the needs of land managers, who are confronted with a multitude of processes and pressure types and require clear and simple strategies to prevent regime shift or to increase the resilience of their environment. The EU-FP7 CASCADE project is looking at regime shifts of dryland ecosystems in southern Europe and specifically focuses on rangeland and forest systems which are prone to various land degradation threats. One of the aims of the project is to evaluate the impact of different management practices on the dynamic of the environment in a participatory manner, including a multi-stakeholder evaluation of the state of the environment and of the management potential. To achieve this objective we have organized several stakeholder meetings and we have compiled a review of management practices using the WOCAT methodology, which enables merging scientific and land users knowledge. We highlight here the main challenges we have encountered in applying the notion of regime shift to real world socio-ecological systems and in translating related concepts such as tipping points, stable states, hysteresis and resilience to land managers, using concrete examples from CASCADE study sites. Secondly, we explore the advantages of including land users’ knowledge in the scientific understanding of regime shifts. Moreover, we discuss useful alternative concepts and lessons learnt that will allow us to build a participatory method for the assessment of resilient management practices in specific socio-ecological systems and to foster adaptive dryland management.
Resumo:
Soil indicators may be used for assessing both land suitability for restoration and the effectiveness of restoration strategies in restoring ecosystem functioning and services. In this review paper, several soil indicators, which can be used to assess the effectiveness of ecological restoration strategies in dryland ecosystems at different spatial and temporal scales, are discussed. The selected indicators represent the different viewpoints of pedology, ecology, hydrology, and land management. Two overall outcomes stem from the review. (i) The success of restoration projects relies on a proper understanding of their ecology, namely the relationships between soil, plants, hydrology, climate, and land management at different scales, which are particularly complex due to the heterogeneous pattern of ecosystems functioning in drylands. (ii) The selection of the most suitable soil indicators follows a clear identification of the different and sometimes competing ecosystem services that the project is aimed at restoring.
Resumo:
The White Paper is a review of leading scientific knowledge on the role of knowledge management, institutions and economics in monitoring and assessment of land degradation and desertification. It provides key recommendations for more effective policies and actions for combating desertification both withn the UNCCD and beyond. This White Paper is the result of an international collaboration and consultation led jointly by the Association of DesertNet International and the United Nations University - Institute for Water, Environment and Health (UNU-INWEH), of the Dryland Science for Development Consortium (DSD). The findings were presented at the First UNCCD Scientific Conference held during the COP-9 in Buenos Aires, 2009.
Resumo:
Traditionally, desertification research has focused on degradation assessments, whereas prevention and mitigation strategies have not sufficiently been emphasised, although the concept of sustainable land management (SLM) is increasingly being acknowledged. SLM strategies are interventions at the local to regional scale aiming at increasing productivity, protecting the natural resource base, and improving livelihoods. The global WOCAT initiative and its partners have developed harmonized frameworks to compile, evaluate and analyse the impact of SLM practices around the globe. Recent studies within the EU research project DESIRE developed a methodological framework that combines a collective learning and decision-making approach with use of best practices from the WOCAT database. In-depth assessment of 30 technologies and 8 approaches from 17 desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats such as water scarcity, soil and vegetation degradation, low production, climate change, resource use conflicts and migration. Among the impacts attributed to the documented technologies, those mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Water harvesting offers under-exploited opportunities for the drylands and the predominantly rainfed farming systems of the developing world. Recently compiled guidelines introduce the concepts behind water harvesting and propose a harmonised classification system, followed by an assessment of suitability, adoption and up-scaling of practices. Case studies go from large-scale floodwater spreading that make alluvial plains cultivable, to systems that boost cereal production in small farms, as well as practices that collect and store water from household compounds. Once contextualized and set in appropriate institutional frameworks, they can form part of an overall adaptation strategy for land users. More field research is needed to reinforce expert assessments of SLM impacts and provide the necessary evidence-based rationale for investing in SLM. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the new EU CASCADE project.
Resumo:
Managing land sustainably is a huge challenge, especially under harsh climatic conditions such as those found in drylands. The socio-economic situation can also pose challenges, as dryland regions are often characterized by remoteness, marginality, low-productive farming, weak institutions, and even conflict. With threats from climate change, disputes over water, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) measures will only increase in the future. Within the EU-funded DESIRE project, researchers and stakeholders jointly identified existing SLM technologies and approaches in 17 dryland study sites located in the Mediterranean and around the world. In order to evaluate and share this valuable SLM experience, local researchers documented the SLM technologies and approaches in collaboration with land users, utilizing the internationally recognized WOCAT questionnaires. This article provides an analysis of 30 technologies and 8 approaches, enabling an initial evaluation of how SLM addresses prevalent dryland threats, such as water scarcity, soil degradation, vegetation degradation and low production, climate change, resource use conflicts, and migration. Among the impacts attributed to the documented technologies, those mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Favorable local-scale cost–benefit relationships were mainly found when considered over the long term. Nevertheless, SLM was found to improve people’s livelihoods and prevent further outmigration. More field research is needed to reinforce expert assessments of SLM impacts and provide the necessary evidence-based rationale for investing in SLM.
Resumo:
Previous syntheses on the effects of environmental conditions on the outcome of plant-plant interactions summarize results from pairwise studies. However, the upscaling to the community-level of such studies is problematic because of the existence of multiple species assemblages and species-specific responses to both the environmental conditions and the presence of neighbors. We conducted the first global synthesis of community-level studies from harsh environments, which included data from 71 alpine and 137 dryland communities to: (i) test how important are facilitative interactions as a driver of community structure, (ii) evaluate whether we can predict the frequency of positive plant-plant interactions across differing environmental conditions and habitats, and (iii) assess whether thresholds in the response of plant-plant interactions to environmental gradients exists between ``moderate'' and ``extreme'' environments. We also used those community-level studies performed across gradients of at least three points to evaluate how the average environmental conditions, the length of the gradient studied, and the number of points sampled across such gradient affect the form and strength of the facilitation-environmental conditions relationship. Over 25% of the species present were more spatially associated to nurse plants than expected by chance in both alpine and chyland areas, illustrating the high importance of positive plant-plant interactions for the maintenance of plant diversity in these environments. Facilitative interactions were more frequent, and more related to environmental conditions, in alpine than in dryland areas, perhaps because drylands are generally characterized by a larger variety of environmental stress factors and plant functional traits. The frequency of facilitative interactions in alpine communities peaked at 1000 mm of annual rainfall, and globally decreased with elevation. The frequency of positive interactions in dtyland communities decreased globally with water scarcity or temperature annual range. Positive facilitation-drought stress relationships are more likely in shorter regional gradients, but these relationships are obscured in regions with a greater species turnover or with complex environmental gradients. By showing the different climatic drivers and behaviors of plant-plant interactions in dryland and alpine areas, our results will improve predictions regarding the effect of facilitation on the assembly of plant communities and their response to changes in environmental conditions.
Resumo:
Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of - and interrelationships among - these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modelling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants' height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: (1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and (2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants. (C) 2014 Geobotanisches Institut ETH, Stiftung Ruebel. Published by Elsevier GmbH. All rights reserved.
Resumo:
Understanding how organisms control soil water dynamics is a major research goal in dryland ecology. Although previous studies have mostly focused on the role of vascular plants on the hydrological cycle of drylands, recent studies highlight the importance of biological soil crusts formed by lichens, mosses, and cyanobacteria (biocrusts) as a major player in this cycle. We used data from a 6.5-year study to evaluate how multiple abiotic (rainfall characteristics, temperature, and initial soil moisture) and biotic (vascular plants and biocrusts) factors interact to determine wetting and drying processes in a semi-arid grassland from Central Spain. We found that the shrub Retama sphaerocarpa and biocrusts with medium cover (25–75%) enhanced water gain and slowed drying compared with bare ground areas (BSCl). Well-developed biocrusts (>75% cover) gained more water, but lost it faster than BSCl microsites. The grass Stipa tenacissima reduced water gain due to rainfall interception, but increased soil moisture retention compared to BSCl microsites. Biotic modulation of water dynamics was the result of different mechanisms acting in tandem and often in opposite directions. For instance, biocrusts promoted an exponential behavior during the first stage of the drying curve, but reduced the importance of soil characteristics that accentuate drying rates. Biocrust-dominated microsites gained a similar amount of water than vascular plants, although they lost it faster than vascular plants during dry periods. Our results emphasize the importance of biocrusts for water dynamics in drylands, and illustrate the potential mechanisms behind their effects. They will help to further advance theoretical and modeling efforts on the hydrology of drylands and their response to ongoing climate change.
Resumo:
Aim Geographical, climatic and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. The aim of this study was to: (1) characterize patterns of beta diversity in global drylands; (2) detect common environmental drivers of beta diversity; and (3) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location Global. Methods Beta diversity was quantified in 224 dryland plant communities from 22 geographical regions on all continents except Antarctica using four complementary measures: the percentage of singletons (species occurring at only one site); Whittaker's beta diversity, β(W); a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites, β(R2); and a multivariate abundance-based metric, β(MV). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographical, climatic and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity percentage of singletons and β(W) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance (β(R2) and β(MV) were more associated with climate variability. Interactions among soil variables, climatic factors and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving c. 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.
Resumo:
Aim The global spread of woody plants into grasslands is predicted to increase over the coming century. While there is general agreement regarding the anthropogenic causes of this phenomenon, its ecological consequences are less certain. We analysed how woody vegetation of differing cover affects plant diversity (richness and evenness) and the surrogates of multiple ecosystem processes (multifunctionality) in global drylands, and how these change with aridity. Location Two hundred and twenty-four dryland sites from all continents except Antarctica, widely differing in their environmental conditions (from arid to dry-subhumid sites) and relative woody cover (from 0 to 100). Methods Using a standardized field survey, we measured the cover, richness and evenness of perennial vegetation. At each site, we measured 14 soil variables related to fertility and the build-up of nutrient pools. These variables are critical for maintaining ecosystem functioning in drylands. Results Species richness and ecosystem multifunctionality were strongly related to woody vegetation, with both variables peaking at a relative woody cover (RWC) of 41–60. This relationship shifted with aridity. We observed linear positive effects of RWC in dry-subhumid sites. These positive trends shifted to hump-shaped RWC–diversity and multifunctionality relationships under semi-arid environments. Finally, hump-shaped (richness, evenness) or linear negative (multifunctionality) effects of RWC were found under the most arid conditions. Main conclusions Plant diversity and multifunctionality peaked at intermediate levels of woody cover, although this relationship became increasingly positive in wetter environments. This comprehensive study accounts for multiple ecosystem attributes across a range of levels of woody cover and environmental conditions. Our results help us to reconcile contrasting views of woody encroachment found in the current literature and can be used to improve predictions of the likely effects of encroachment on biodiversity and ecosystem services.
Resumo:
Healthy soils are fundamental to life. They grow the food we eat and the wood we use for shelter and fuel, purify the water we drink, and hold fast to the roots of the natural world we cherish. They are the ground beneath our feet and beneath our homes. But they are under threat, especially from human overuse and climate change. Nowhere is this more evident than in dryland areas, where soil degradation – or desertification – wears away at this essential resource, sometimes with sudden rapidity when a tipping point is crossed. Though it is a challenge, preserving and restoring healthy soils in drylands is possible, and it concerns all of us. Sustainable land management points the way.